
AD-A197 342

RADC-TR-88-7
Rnal Technical Report 4
January 198,

GRAPHICAL PROGRAMMING AND
MONITORING

Massachusetts Institute of Technology

Sponsored by

Defense Advanced Research Projects Agency
Arpa Order No. 4469

The views and conclusions contained In this document are those of he amtors and

should not be Interpreted as necessarlly represening the official polilies, ether
* expressed or Implied, of the Defense Advanced Research Projects Agency or the U.S.

Goverment.

DT"C- ,ELECTE

• ,." ..JUL 0 a 198=

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

M Yr 1J Ar PWM Mr1VW 1J~~J ?%RWXW1 F% -- IP6l ?9. 1 P% xft.N -'.W I~~'l

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-88-7 has been reviewed and is approved for publication.

APP ROVED: •

RICHARD M. EVANS
.',.L',Project Engineer

APPROVED:

RAYMOND P. URTZ JR.
Technical Director
Directorate of Command & Control

FOR THE COMMANDER-

JOHN A. RITZ
% Directorate of Plans & Programs
U..,

* If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (COES) Griffiss AFB NY 13441-5700. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or

* notices on a specific document require that it be returned.

%.-
* - -. - -- --- * -. --X ---

WU~ w%-A"

Aesson For
IMTS GRA&I

DTIC TAB

Unannounced

GRAPHICAL PROGRAMMING AND MONITORING Justificati

J.C.R. Licklider
Dist ibuin

Avallbi3.it, Cd

Contrct Nmber: F3062-8Codes7

Contractor: Massachusetts Institute of Technology

Effective Date of Contract: 17 Sep 82
Contract Expiration Date: 20 Sep 86
Program Code Number: 5E20
Short Title of Work: Graphical Programming and Monitoring

0'9Period of Work Coveree.: Sep 82 - Sep 86

Principal Investigator: J.C.R. Licklider
Phone: (617) 253-7705

RADC Project Engineer: Richard M. Evans

Phone: (315) 330-3564

Approved for public release; distribution unlimited

This research was supported by the Defense Advanced Research
* Projects Agency of the Department of Defense and was monitored

by Richard M. Evans (COES) Griffiss AFB NY 13441-5700 under
Contract F30602-82-K-0170.

0AR FrA 86145/ 10-6-88 - 70

0

- : . •

..

.> .. i

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE F

Form Approved !

REPORT DOCUMENTATION PAGE OMB No, 0704-0188

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED N/A

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT
N/A Approved for public release;
2b. DECLASSFICATION / DOWNGRADING SCHEDULE distribution unlimited
N/A,__

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

LCS- 1986/AF 1 RADC-TR-88-7

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
Massachusetts Institute (if applicable)

of Technology Romc Air Development Center (COES)

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)
Laboratory for Computer Science

77 Massachusetts Avenue Griffiss AFB NY 1341-5700

Cambridge MA 02139

- Ba. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Defense Advanced (If applicable)

Research Projects Agency F30602-82-K-0170

"c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

1400 Wilson Blvd ELEMENT NO NO NO ACCESSION NO.
Arlington VA 22209 PE6111E D469 01 01

11. TITLE (include Security Classification)
GRAPHICAL PROGRAMMING AND MONITORING

12 PERSONAL AUTHOR(S)

J.C.R. Licklider
13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Final FROM Si ZS2 TOep8b January I188 72

.A 16. SUPPLEMENTARY NOTATION
N/A

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Graphical Programming graphical monitoring
12 U5 Iconic programming

Diagrammatic programming
19 ABSTRACT (Continue on reverse if necessary and identiy by block number)

the goal of this research was to explore graphical programming and graphical monitoring of

the interpretation of computer programs and develop a concept demonstration system for
creating programs graphically. The system, GRAPPLE, is essentially a graphical interface to
a LISP-like language called"'MDL."

*
' Using GRAPPLE, the programmer develops a diagrammatic

representation of a program by making selections from menus with a)mouse' and typing some

short labels on a keyboard. CRAPPLE then creates a symbol
4

MDL program as a subprogram in

further programming or run it with whatever data it requires. The report describes the

,d programming process in detail and includes a discussion of issues, conclusions and recommenda
tions.

20 DISTRIBUTION! AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
0 UNCLASSIFIED/UNLIMITED C SAME AS RPT Q DTIC USERS UNCLASSIFIED

2a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include AreaCode) 22c OFFICE SYMBOL

Richard M. Evans 35 330-3564 RADC (COES)
• DO Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

L I M 11 ,i I I l l 11 11,1 1 1

Table of Contents
1. Foreword 1
2. Intro luction 3

2.1. Purpo'se of Project 3
2.2. Three Main Undertakings 3
2.3. \Vho Worked on What 3
2A. The programming language MDL 5
2.5. The Computer System 6

3. A (riphics S ystem Within MDL to Suppoi't Graphical Programming and Monitoring 7
3.1. lcgions 7
3.2. Drawing Functions 8
3.3. ['outs 8
3.4. Thc .\louse 9
3.5. Use of ICONOGRAPHER 10

4. Explorations in Graphical Programming and in Graphical Facilitation of the Understanding of 11
Programs

4.1. Traciug Programs 11
-1.2. A Dynamic Graphic Evaluator of Arithmetic Expressions 11
-. 3. INFORMER 12
4.4. Graphical Representation of MDL Programs as Trees 13
-1.5. A B'-sie Non-Grapbical Tracing Function for MDL 13
-1.6. Dvnamic Icons 13
-1.7. A Dynamic Icon for Multiplicatin" 13
.8..- Dynamic Icon for Dividing a Rectangle into Rectangular Halves 14

-. 9. Conclusions About Dynamic Graphical Representation of the Evaluation of Programs 15
5. A Graphical Programming System 18

5.1. GRAPPLE 18
5.2. GRAPPLE's Initial Menu 19
5.3. Programming Sessions and the Save File 20
5.4. Compiling 20
5.5. The Screen Layout 20
5.6. Programming a Very Simple Function with GRAPPLE 22
5.7. The Main Programming Operations of GRAPPLE -- The Main Menu 25
5.8. Operators and the Menu of Operators 29
5.9. Data Types and Classes 30
5.10. Programming a Function to Determine the Sum of the Squares 33

6. A Tutorial User's Manual 37
7, l.-scs in Gr;ajiical Programming and Monitoring 39

7.1. \\hoin Can Graphics Help? 39
* 7.2. . rte of the Good Things Graphics Can Do 42

Lim7.3 l izitons of Computer Graphics That Stand in the Way of Exploiting the Potential 43

8. ('otrlusiois 46
9. lRcon nulb1 tions 47
10. Hek'enruces 48
11. Lt or AI breviations, Acronyms, and Symbols 49

i i

GRAPHICAL PROGRAMMING

AND MONITORING

A Graphical Interface to a LISP-like Programming Language

1. Foreword
This project was initiated as parL of an effort, sponsored by the Defense Advanced Research

Agency and managed for DARPA initially by Craig Fields and Clinton Kelly, to improve

the art of computer programming and the understanding of programs through the use of

graphics and visualization. During the latter part of the project, the program manager for

DARPA was Stephen Squires. The project was contracted for and monitored by the Air

Force under Contract No. F30602-82-K-0170. The project monitor throughout was

Riehard M. Evans of Rome Air Development Center. The M.I.T. participants in the project

greatly appreciate the sustained and sustaining interest and contributions made by Fields,

Kelly, Squires, arid Evans.

Much of this project was devoted to exploration of ideas about how to represent program

constructs graphically and how to use graphics to facilitate the development and to increase

the understandability of programs. Some of the ideas that seemed most developable, given

the present state of computer graphics, concerned the use of icons and structure diagrams

in the creation of programs. Some of those ideas were incorporated into a system called

GRAPPLE, a graphical programming language or, more accurately, a graphical interface to

MDL, which is a derivative of the programming language LISP. GRAPPLE is described in

the section on A Graphical Programming System. MDL is described in The MDL

Programming Language by S. W. Galley and Greg Pfister.

The participants in the project were 18 M.I.T. undergraduate students, who worked for

periods varying from a few months to a little over three years, and a professor of computer

science, who functioned as principal investigator as well as experimenter and programmer

and participated throughout the project. The 18 undergraduate students were Jeff Dike,

Malcolm D. A. Duke, Rolf Embom, Mark A. Herdeg, Janet Hirata, Colleen Humphreys,

Young-Jo Kim, Marie Paz Kudich, Bassanio W. C. Law, Stuart Malone, Mark McEntee,

Catherine Naylor, Gordon S. Shaw, Colin L. Shepard, John Shrivanandon, Bosco Y. So,

Michael A. Thompson, and Jennice Y. Wang. The principal investigator was

r1

= Omni

J. C. R. Licklider, the writer of this report. The allocation of tasks among the participants

is outlined in the section, Who Worked on What.

*1/

S|

0i

2!

0a

2. Introduction

2.1. Purpose of Project

The purpose of the project, Graphical Programming and Monitoring, was to explore the use

of computer graphics in preparing programs and in monitoring the interpretation or

execution of programs. The graphic techniques employed were limited to line drawings and

to small icons composed of binary dot or pixel patterns in a matrix of about 10 by 16

pixels. The graphics were supplemented where necessary by alphameric text. The

programming language used throughout the project, and the language in which the

graphical programming system developed by the project prepares programs, is MDL, a close

relative of LISP. The acronym NIDL can be expanded into More Datatype.: than Li8p.

2.2. Three Main Undertakings

During the 4-year course of the project, there were three main undertakings. The first was

*the selection or development -- the latter, as it turned out -- of a graphics system within

MDL, a system to facilitate the preparation of graphical programs. The second was the

exploration of a variety of graphical ideas and techniques that offered promise of

facilitating the preparation or the understanding of ordinary (nongraphical) programs. The

third was the development of a concept demonstration program, a graphical programming

system for preparing MDL programs, a system that carries one small set of graphical ideas

and techniques far enough to permit the preparation of nontrivial MDL functions and

macros and to let one experience some of the advantages and limitations of the graphics

medium.

2.3. Who Worked on What

The people who worked on the project were eighteen M.I.T. undergraduate students and

one professor. The students were associated with the project for periods ranging from one

term to the duration and the professor, of course, for the duration. In the following table,

* the people who worked on the project are paired with the activities to which they mainly

contributed.

Jeff Dike A system to let VAX-BitGraph programs run on a VAXstation II.
(Thesis)

A system for recording graphical scope displays on the Xerox Dover laser

printer.

Programs to exploit capabilities of the BitGraph display.

3

101 1 il 1

* Malcolm D. A. Duke
Programs to facilitate testing and documentation of other programs.

Rolf Embom Graphical display of data structures at various levels of abstraction.

Mark A. Herdeg Graphical support software.

Dynamic graphical display of evaluation of arithmetic and algebraic

expressions.

Janet Hirata Dynamic graphical display of interpretation of MDL functions.

Colleen Humphreys
Dynamic tracing program.

Updating early programs and preparing demonstrations.

Copying the project's computer software onto back-up tapes.

Young-Jo Kim Exploring approaches to graphical representation of data types and

operations.

* Marie Paz KudichExploring approaches to graphical representation of data types and
operations.

Bassanio W. C. Law
Documentation standards and documentation aids for the project's

software.

Stuart Malone System wizard.

Graphical support software.

Documentation support software.

Dynamic graphical display of evaluation of arithmetic and algebraic

expressions.

Mark McEntee Exploring approaches to graphical representation of data types and

operations.

Catherine Naylor Graphical representation of MDL progr-.ns as trees. (Thesis)

Gordon S. Shaw Exploring approaches to graphical representation of data types.

Colin L. Shepard Exploring approaches to graphical representation of data types.

John Shrivanandon

The representation of programmer-defined data types in graphical

4

programming. (Thesis)

Bosco Y. So A system for loading MDL functions and data sets when they are referred
to during interpretation or execution.

Michael A. Thompson
Graphically representing the control structure of MDL programs.
(Thesis)

Jennice Y. Wang A library of MDL functions.

J. C. R. Licklider Dynamic graphical display of the interpretation of the application of
MDL functions to data.

The graphical programming system, GRAPPLE.

2.4. The programming language MDL

A decision made early in the project was to use the programming language MDL as the

language in which to write the project's programs and the language in which the project's

graphical programming programs would write programs. MDL is a derivative of LISP, and

the decision had two parts: (1) the decision for a member of the LISP family of languages,

and (2) the decision for MDL in particular. The governing consideration for the first part m-.

was to have a language in which the parts of a program are data that programs can

recognize and operate upon more meaningfully than merely as strings of characters. The

only candidates with that characteristic were members of the LISP family and Smalltalk,

and the latter was just then emerging from Xerox Palo Alto Research Center, not mature

enough for us to use effectively. The governing considerations for the second part were (1)

extensibility in respect of data types and (2) familiarity. MDL was clearly superior to the

other LISP-like languages then available in respect of data type extensibility; it was used

extensively by other members of the group in which the project was embedded; and it was

very familiar to the principal investigator.

There was indeed, however, a consideration that did not favor MDL: MDL was, at the

outset of the graphical programming and monitoring project, in the middle of thb process

of being thoroughly rewritten in such a way as to make it easy to bring up on diverse

computers. The objective was attractive, of course, but the idea of putting all one's

programming at the mercy of a language under revision was not. We decided to proceed

with MDL anyway because we knew the revisers well and had great confidence in their

capability and their willingness to help users-in-need. As it has turned out, MDL and its

revisers served us well. We have been the first to encounter a few revision-implanted bugs, i

5

* ,but only a few, and on the whole MDL has given us a very solid foundation.

2.3. i'he Computer System

*In the early months, the project used a DECSYSTENI-20 time sharing system from the

Digital Equipment Corporation and BitGraph terminals from BBN Computer Co. The time

sharing system was not good for graphics programming, of course, but it was adequate as

an interim system. The BitGraph terminals were, when they worked, good for our

purposes. The most important characteristic of the display, for us, was its resolution, and

the BitGraph gave us a display of 1024 by 768 binary pixels. The BitGraph supported a

mouse, which is the most popular (if not the best.) graphical input device, and which was

quite adequate for our purposes. In addition, of course, the BitGraph provides a keyboard,

and the keyboard has 21 keys that can be used as function keys.

Toward the end of the first year, the project acquired a Digital Equipment Corporation

VAX-750 computer with 8 megabytes of semiconductor memory and a Fujitsu Eagle disk.

The VAX was operated under the Unix operating system with the Berkeley shell (version

4.2 or 4.3). The VAX was operated as a time sharing system, but usually with only one to

four users, and with the arrangement that a user in need of a lot of machine cycles usually

could command 80 or 90 per cent of all the N AX had to offer. The new MDL operated well

in that context, and the hardware/software system provided an excellent programming

environment.

Perhaps to balance out some of the good fortune, the performance and reliability of the

BitGraph displays began to deteriorate, and BBN Computer Co. ceased to support them

with repairs or new parts. We did not want to get into a large order of display

reprogramming, so we took advantage of the fact that other groups in the laboratory were

moving away from BitGraphs to other displays. We collected deteriorating BitGraphs and

wore them down to total collapse. Fortunately, a couple of them appear to be outlasting

the project, and, while they are working, they are quite satisfactory. indeed, by the

* standards of three or four years ago, when they were built, they are excellent.

.

6

'11 11 Jil 11 1 1 1 N 1 ,

3. A Graphics System Within MDL to Support Graphical
Programming and Monitoring

The first approach of the project to graphics was to try out a system already available

within MDL, a system called DIGRAM (Device Independent Graphics for MDL) that had been

designed and implemented as a Master's thesis problem by Lim Po. This system had many

features, including features that we did not need in order to draw the rather simple,

diagramatic figures we planned to use, and the system paid in running speed for its extra

* functionality. Very early in the project, therefore, Stuart Malone and Mark Herdeg

1 undertook the development of a rather simple graphics system to support the preparation

of graphical programming and monitoring programs in MDL. The system they created,

* ICONOGRAPHER, will be described briefly in this section.

3.1. Regions

Whereas DIGRAM provided for displaying figures in movable and resizable windows and

for translating, scaling, and rotating the figures and clipping them to make them fit (and

%. keep on fitting) into the windows, ICONOGRAPHER avoided or isolated much of that

*processing -- especially the clipping, which requires a large amount of computation and is

best accomplished by special-purpose hardware. ICONOGRAPHER uses a simple version of

the window concept. A region is a structured object that contains the following

information:

" the identifying number of the region

" the origin of the region in terms of whole-screen coordinates

" the height and width of the region

" the margins of the region (for displaying text)

" the display mode of the region (one of 16 Boolean functions of two binary
variables, the source pixel and the destination pixel, in a scheme widely used in

computer graphics but not crucial to our use of the system)

" previous display modes of the region (in a stack below the present mode)

ICONOGRAPIHER provides functions for creating and destroying regions and for setting

and resetting origins, heights, widths, margins, and modes. Each drawing function of

* ICONOGRAPHER takes a region as an argument and plots in the region's coordinate

system. Thus regions provide a limited version of translation, but not of scaling or

rotation, and not of clipping. If the user tries to draw a line that extends outside of a

region, the line is not plotted at all.

,,

1%%

.6~

* •3.2. Drawing Functions

ICONOGRAPHER provides functions for drawing points, straight lines, splines (curved

lines), polygons, ellipses (filled and unfilled), and text (in the current font). And it provides

functions for setting, pushing, and popping drawing modes, clearing regions, and

performing so-called mix-box operations that depend upon what is being displayed in a

source area (alluded to earlier) as well as upon what is being displayed in the destination

: .7 area (in which the pre, ont plotting is to be done).

The drawing function that incorporates translation, scaling, and something approximating

rotation is the function called DRAW-ICON. If given as arguments a REGION and a data type

called ICON consisting of figures mentioned in the previous paragraph, it draws the figures

in the specified region, using the coordinates in terms of which the figures are specified as

region coordinates. If given an extra argument, a POINT consisting of two integers, it

-translates the icon figure or figures, using that point as their origin. If given a second extra

argument, a DELTA consisting of two integers, DRAW-ICON scales the figure or figures with

scale factors derived from the integers. And, if given a third extra argument, another

DELTA of two integers, DRAW-ICON tilts the axes at angles derived from the integers. Thus

DRAW-ICON makes it easy to define a diagramatic figure shape and then display it in various

locations at various sizes and to control its orientation or distort it in the process of

displaying it.

3.3. Fonts

ICONOGRAPHER includes a font editor and routines for displaying strings of characters of

selected fonts at specified locations in regions. The font editor permits the user to specify

the dimensions of each character in pixels and then to switch each pixel on or off with the

mouse. It is possible, therefore, to create true icons in two different ways, (1) as line

drawings with functions from the DRAW package and (2) as quaisi-pictorial characters with

FONTED.

* The computer system operates with two concurrently available fonts, either of which can be

the active or default font, and any number of stored fonts. ICONOGRAPHER makes if

convenient to bind or rebind any one of the stored fonts to either of two concurrently

-.. . available font names. Thus one can have a fairly large set of icons on tap for immediate

* display and a very large set for display after a little switching that causes imperceptible

delay.

08

0
• ' " * " ..

3.4. The Mouse

The mice used with the computer system are three-button mice. A user -- programmer or

monitor -- has one physical mouse. It is associated with the program construct called the

current mouse. Inside MDL, in the MOUSE package of ICONOGRAPHER, there are as many

software mice as needed, but only one of them can be the current mouse. Each of the

software mice is associated with a region. Each region has a mouse stack onto which mice

of the region can be pushed and from which they can be popped.

Each mouse has a set of parameters that govern its sensitivity to movement, the

circumstances under which the mouse will report to the computer, and what will happen --

i.e., what function will be activated -- when the mouse reports. The MOUSE package

provides functions for installing a mouse as the current mouse, for pushing and popping

mice, and for setting or resetting the parameters.

In graphical programming, the mouse is used in two basically different ways.

The first way gives the user full initiative. The program the user is going to interact with

is not running. The MDL interpreter is just sitting in a loop waiting for something to be

fed to it from the keyboard or the mouse. (And we are focusing, now, on the case in which

the input is going to come from the mouse.) If, for example, the mouse (together with the

mouse circuitry and the mouse software in the terminal) reports that its middle button has

been pushed and that its coordinates are 123 and 456, a function associated with the

middle button begins to run, and it has the coordinates available to it as data. If the

coordinates are associated with a particular selection in a menu, the function can examine

the selection and activate another function associated with that item in the menu. I lus

the user can control -- actually indirectly but seemingly directly -- what happens. We re , r

to this kind of control as user's initiative control or, if the user is programming, t;

prograrni ncr', initiative control.

* In the second way of using the mouse, a program that controls in a general way what is

going to happen is already being interpreted or executed by the MDL interpreter. That

program instructs the user to make a selection with the mouse and then waits for the user

.1. (and mouse) to respond. The user usually responds by moving the mouse to a pertinent

* location and then pressing a mouse button. The program then usually carries out the

general action it was set to carry out, but the action is further defined by the coordinates

(or other information) read from the mouse. We refer to this kind of control as users

rc.sOn1sic, or progranminer'.s res.)onsive control.

0!

* •3.5. Use of ICONOGRAPHER

ICONOGRAPHER was used by all the members of the project who wrote graphics

programs, and it provided the graphical substructure of GRAPPLE, the graphical

programming program to be described in the second-following section. ICONOGRAPHER

was judged easy to learn, easy to use, and sufficiently powerful for the needs of the project.

Perhaps the stack mechanism associated with the mouse was even more than any of us

needed, and surely it would have been good to have a menu package closely integrated with

the mouse functions, but, on the whole, ICONOGRAPHER turned out to be just about

what we needed. Unfortunately, however, it does not appear that there is any good path

for ICONOGRAPHER to follow to find utility beyond the present project. It is limited to

the context of MDL and the BigGraph display, and there does not seem to be for either a

future full of widespread use.

10

4. Explorations in Graphical Programming and in Graphical
Facilitation of the Understanding of Programs

This section is an effort to summarize a number of informal explorations, carried out

mainly by students. Three of the explorations were carried far enough to warrant

describing them individually. The others, together with informal discussions surrounding

them, led to some subjective conclusions that may be worth recording.

The basic idea underlying most of the explorations in monitoring the interpretation of

programs is the idea of dynamic graphical representation of programs, data, and the

operation of programs on data. There are many approaches to and variations of the idea:

dynamic flowcharts; trace programs that correlate flow through the text of the program

with changes in the data structures on which the program operates; iconic operators acting

upon iconic data; focusing attention upon the data and depicting changes in them

graphically instead of textually; representing both programs and data schematically and

showing explicit links between the execution of each part of the program and the data

changes that are effected by the execution. Several of these approaches and variations

* upon them were explored during the project.

4.1. Tracing Programs

An action common to several of the approaches is tracing the program. Essentially, what

one wants is to be able to examine the data, then interpret one expression of the program,

and then examine the data again. Since the expressions of a program in a LISP-like

language are usually tree-structured, it is good to adopt a tree-walking procedure for

interpreting the program step-by-step.

4.2. A Dynamic Graphic Evaluator of Arithmetic Expressions

At the outset of the project, Stuart Malone and Mark Herdeg wrote a program that

provided a dynamic graphic presentation of the evaluation of simple, tree-structured

* expressions. Given the expression <COS <+ <- .X .Y> <- .X .Z>>>, for example, their

program showed two boxes, one for COS and the other for the rest of the expression. Then

the latter box was subdivided to provide a box for the + and, to its right, two boxes for the

<- .X .Y> and the <- .X Z>. And then those two boxes were subdivided to provide boxes

• ,for the the respective operators (both instances of -) and operands (,X and Y in the first

_ case and .X and Z in the second). Then the current values -- say 5, 4, and 3, respectively
4 _ -- were substituted for the Xs, the Y, and the Z. Then the lowest-level boxes were

removed and the values -- 1 for <- 5 4> and 2 for <- 5 3> were substituted. And then the

next-level-up boxes were removed and 3 was substituted for <+ 1 2>. Finally, the next-

~~1i

11L

* . level-up boxt-s were removed and -0. 9899931 was substituted for <COS 3>.

The Malone-Herdeg program was simple but dramatic. It illustrated the hierarchical

evaluation scheme of LISP-like languages and made it clear and obvious that evaluation

proceeds first from left to right, then turns around and flows back in a leftward direction,

winding up in the center of the diagram. It is easy, then, to explain what top dowfl and

bottotii up mean, and to see the relation of the box diagrams to tree structures. The

program had a definite limitation, however: It did not deal with the special functions of

MDL, such as COND, that affect flow of control.

4.3. INFORMER

Also early in the project, Mike Thompson programmed a general tree-walking tracing

program called L\FORIER. It is described in his undergraduate thesis, Graphically

Representing the Control Structure of MDL Programs. INFORMER ased as its basis a

scheme of type substitution that made it possible to employ the MDL interpreter without

changing it at all, yet to have it evaluate supplementary expressions just before and just

after evaluating selected expressions in the program. Essentially, the user selected the

expressions that were to be preceded and followed by supplementary evaluations and

preprocessed those expressions by changing their types to corresponding new types. These

Anew types were endowed with rules for evaluation or application that sandwiched the old

rules (that is, the rules for the corresponding old types) in between rules for the

supplementary processing. Thus what would ordinarily be the invisible processing of the

expression <SET X <+ X .Y>> could be changed into a graphical representation of .X and

.Y, then the invisible processing of the expression <SET X <+ .X .Y>>, and then a graphical

representation of the new value of .X and the new (same as old) value of .Y, perhaps even

with arrows to make it clear how two values -- the values of .X and .Y -- flowed into the

sum and then one value -- the result value -- flowed from the sum back to the X to become

the new .X, leaving the value of .Y unchanged.

* INFORMER provided a graphical control system with which the user could isolate certain

regions of the tree for concentrated examination of data changes. It provided for both

textual and graphical representation of the operation of the program and its effect upon

data. Thus INFORMER provided a basic tracing program upon which one could build

• _graphical displays to test out various approaches to dynamic graphical representation.

Mike Thompson exploited this capability to a limited extent, building simulators for COND,

PROG, and a few other special operators and iconic representations for a few data types. His

essential contribution, however, was to provide a working implementation of the dynamic

12

0I

* •tracing paradigm that clearly demonstrated the concept and made evident some of its main

capabilities and limitations.

4.4. Graphical Representation of MDL Programs as Trees

During the second year of the program, several students explored aspects of dynamic

graphical representation. The project that developed the general idea farthest was one

carried out by Catherine Naylor and described in her undergraduate thesis, Graphical

Repr.seintation of AIDL Programs as Trees. The action of her program was directly analogous

to that of the Malone-Herdeg program, but her program used a downward-branching tree

representation instead of a box representation, and it was more general, dealing with COND,

AND, OR, and other special functions of MDL. The main limitation of her program was that

it did not deal adequately with evaluations of large expressions that tend to "run off the

screen".

4.5. A Basic Non-Graphical Tracing Function for MDL

Colleen Humphreys also developed a tracing program. Her program proved to be so useful

* without graphics that she worked on it mainly as a powerful and efficient textual tracer,

and it became the standard tracing function of MDL.

4.0. Dynamic Icons

Several efforts were made to explore the concept of dynamic or kinematic icons. None of

the efforts was able to carry the idea any large fraction of the distance it would have to be

carried to create a practical system because, if the analysis were made at a low level, too

much detail was created, and if the analysis were made at a high level, there were too many

different actions to deal with, and the number of individual functions required to

implement a system was prohibitive. In order to develop the idea just a bit, however, let us

describe two of the notions explored.

* 4.7. A Dynamic Icon for Multiplication

* On the one hand, consider the action involved in multiplying one number by another. A

program was written that represented the action graphically by starting with two arrows

whose lengths represent the magnitudes of the numbers. For the sake of simplicity, both

numbers were assumed to be positive and oriented with arrows pointing upward. The

program rotated one of the arrows until it was horizontal and set its base at the point

occupied by the base of the other arrow, thus forming the x and y axes of a graph. Then

the program drew two more lines to form a rectangle of height equal to the length of one

13

II0U I! ;R $

0 arrow and width equal to the length of the other arrow. Then the program filled up the

rectangular area with a continuous line looping back and forth like a length of string to

approximate filling up the rectangle. And, finally, the program made a small hole in one

side of the rectangle, near the base, and pulled the string out, stretching it to make a

straight line of length proportional to the area of the rectangle and therefore to the product

of the two numbers.

The program thus presented a dynamic or kinematic representation of multiplying two

numbers. It is conceivable that one might develop a system with such a dynamic icon for

each basic operator of a programming language. But the problems of programming and

monitoring programs probably do not extend down to the level of seeing the relation of the

*product of two numbers to the area of a rectangle. The program might be of some interest

in the teaching of arithmetic, but it portrayed events at too low a level to serve as a

building block for a program to facilitate the monitoring of programs during interpretation

or execution. In short, at the low level of analysis chosen, there are not too many different

operators, there are just too many operators: it takes very many subordinate operations to

accomplish anything the user identifies as an objective, and the apparent complexity is

overwhelming if each of them is shown in great detail.

4.8. A Dynamic Icon for Dividing a Rectangle into Rectangular Halves

On the other hand, consider the operation of dividing a rectangle, lined up with the

horizontal and vertical axes, into two equal rectangles by drawing a line either horizontally

or vertically through its middle. That is a somewhat (but not much) higher-level operation

than multiplication. It is an operation that we happened to encounter several times in

graphical programming, but if it were viewed as a member of a comprehensive library of

program components, a rectangle halving function would have to be one of perhaps several

thousand useful (but not all very frequently useful) functions.

Dynamic portrayal of the operation is simple and straightforward: A program was written

in which the original rectangle was defined by four points, its upper left-hand corner, its

upper right-hand corner, its lower right-hand corner, and its lower left-hand corner. The

program was given an argument indicating whether the cut was to be along the horizontal

.5 midline or the vertical midline. If horizontal, the program determined the midpoints of the

* vertical lines. It displayed a bright spot at each end of the left-hand vertical line and then

linked the bright spots with a double spline curve resembling a curly bracket, and another

bright spot was drawn at the midpoint of the line, which was pointed to by the point of the

bracket. Then the same process was portrayed at the other vertical line. And then the

14

11 IJ

0 horizontal dividing line was drawn, connecting the bright spots designating the midpoints.

If the dividing line were to be vertical, of course, the program carried out corresponding

operations on the top and bottom lines of the original rectangle.

The significant thing about this dynamic icon for subdividing rectangles, of course, is not

any dramatic quality of presentation or appeal to any spatial mechanisms of understanding

but the fact that, at this level of analysis, there are thousands and thousands of actions

that are carried out by computer programs. It would be feasible to construct special-

purpose systems -- for example to show fluids flowing through pipes and vessels -- but it

would not bc feasible to construct a general-purpose system to facilitate the understanding

of randomly chosen programs because there would be too many different icons

corresponding to the too many different operations.

4.9. Conclusions About Dynamic Graphical Representation of the Evaluation of Programs

1. The main problem, toward the solution of which, if there is one, we did not
make any progress, is the problem just illustrated: the problem of finding a level
of analysis high enough to focus on practically significant difficulties of

* understanding yet low enough not to require thousands of different icons.

2. During the project, we became aware of and interebted in a graphical interaction
system being developed by Don Hatfield of IBM. Hatfield's system is based on
only five or six fundamental operations, which he represents graphically. Any
action can be captured as an object and then operated upon by the fundamental
operations. It may be that Hatfield has the right approach to the problem of
complexity/diversity. At any rate it is an interesting and promising one.

3. In order to deal in a practical way with the complexity/diversity problem in the
context of graphics, it is necessary to find a way of composing graphic
representations of higher-level programs and data sets out of graphic
representations of lower-level programs and data sets.

%d 4. It is necessary, also, to deal both with flow of control and flow of data. The key
to analysis of flow of control is program tracing.

5. Program tracing is so much easier and more powerful in an interpretive context
than in the context of execution uf compiled code that, surely, a graphical
monitoring system should take advantage of an interpreter. Granted,
interpretation ordinarily is slower than execution of compiled code. What one
actually wants is what is provided by LISP and MDL, an interpreter that will
execute compiled code when it comes to compiled code and that will interpret
source language otherwise. Then the user can control what parts of the
program are traced, what parts are sped through, by loading the compiled code
of the perfected sections of the program and source language versions of the
sections that need to be debugged.

6. A tracing program has to be able to deal with the special functions (such as

15t NII

0O COND and PROG), but it also has to be simple for the user to use. It has to
provide simple hooks to which the user can attach graphical and/or textual
displays, and the type-changing scheme, if used, must be transparent to the
user.

7. There appears to be no truly satisfactory solution to the problem of "running off
the screen". One of the great promises of graphics is to keep active the
perspective of the over-all program, and zooming in on details tends to lose the
over-all perspective. On the other hand, even a modest program is too large to
display on any available screen in full detail. The most attractive prospect is
one or more large, high-resolution displays, with a display area for the over-all
program that remains in view all the time, with another display area for the
over-all data situation that remains in view all the time, and with other display
areas that can be assigned to subordinate parts of the program and subordinate
sets of data as the monitoring process proceeds.

8. Tree structures are difficult to display efficiently on conventional rectangular
displays. The usual tree-shaped display and the divided-rectangle display, which
are in a sense isomorphic, are equally unamenable to efficient use of the display
space. Any effort to gain efficiency by distorting the display to compress sparse
areas or expand dense ones is likely to incur a penalty by hiding relationships
that undistorted graphics would present clearly.

0 9. Graphics is useful both in portraying the structure of a program or data set and
in providing identifiers for things that to some extent resemble the things
identified. But at the present time, in the present state of computer and display
technology, those are two quite different areas, and graphics appears to be of
more practical value, in the context of programs and programming, in
portraying structure than in identifying.

10. For portraying structure, there appears to be no real competition for graphics,
but one of the best schemes may be so familiar and so widely used as a way of
structuring text that one may not think of it as graphics. That scheme is
indentation, of course. Outline-style indentation (which is often referred to in
the computer context as pretty-printing) is capable of portraying hierarchical (or
tree) structures very effectively, even if the components that are placed in the

* indented structure are symbols that bear no pictorial relation to what they

represent.

11. For identifying things, graphical signs (icons) have an advantage over symbols,
of course, in that signs by definition resemble to some extent the things that
they identify, whereas symbols do not. However, the simpler and more abstract
an icon, the less clearly it resembles what it stands for, and the more complex
and concrete an icon, the more difficult it is for present-day computers to deal
with. Most native speakers of western languages know many more symbols than

?signs. There is little hope of getting the most Americans to learn a system of
several hundred icons, let alone several thousand, in order just to improve his or
her ability to command or control a computer.

12. The conclusion that graphics is better, in the computer context, for portraying
structure than for identifying things, is pertinent, of course, to the competition,
in the personal computer world, between icon-based systems of the kind mainly

rt

16

0"

used with the Macintosh computer and symbolic systems of the kind mainly
used with the IBM PC. The icons of the Macintosh (and, earlier, the icons used
at Xerox Palo Alto Reseach Center and in the Xerox Star) are or were fine for
identifying frequently encountered actions of the operating system, but it is
significant that there is not a large amount of application software than carries
the "desk-top metaphor" down deeply into specific applications. Our conclusion
is that icons have very significant potential advantages over symbols but that a
large investment in learning is required of each person who would try to exploit
the advantages fully. As a practical matter, symbols that people already know
are going to win out in the short term over icons that people have to learn in
applications that require more than a few hundred identifiers. Eventually, new
generations of users will come along and learn iconic languages instead of or in
addition to symbolic languages, and then the intrinsic advantages of icons as
identifiers (including even dynamic or kinematic icons) will be exploited.

13. It must be noted that a complex icon is in principle capable of identifying a
complex object and, at the same time, portraying the structure of the object
and even identifying some of its parts. Even a fairly simple icon can identify an
object and some of the properties of the object. Probably the potential of iconic
representation of computer and software constructs lies in this little-explored
area in which identification of objects and portrayal of their structure are
linked. At the present time, however, identification of objects and portrayal of
structure in any deeper sense than approximating their shape are largely

* disjunct. You cannot tell much about the structure of a file from a 'ile icon,
and you cannot identify a pretty-printed function by looking just at the
indentation pattern.

4!

17

E0

5. A Graphical Programming System

5.1. GRAPPLE

The exploration of ideas about monitoring the interpretation or execution of programs to

some extent discouraged us from making the construction of a program monitoring system

the main undertaking of the project. The key discouraging factor, as indicated, was not

seeing how to cope with the inherent complexity of significant programs and data sets. We

made the decision, despite conflicting enthusiasm for the dramatic quality and pedagogical

value of dynamic graphical presentation, to make the main product of the project a

graphical programming rather than a graphical monitoring system. It is a system called

(_;IGHIIPL'Ii. It provides a context within which the user, a programmer, can construct and

use MDL programs graphically. GRAPPLE supports about 90 percent of the built-in

operators of MDL and about two thirds of the built-in data types pertinent to applications

of MIDL. However, GRAPPLE does net deal with the niany esoteric data types that relate

to system programming, and it appears best to keep it that way because there is plenty for

the user to learn as it is.

*' The user of GRAPPLE must know something about programming and something about
MDL or LISP. We think that GRAPPLE may be most helpful, however, to a relative

newcomer to programming who is studying a LISP-like language. The main value of

GRAPPLE to the neophyte programmer probably lies in the concreteness of the graphical

representation. Each datum has a residence site, and each use of a datum is connected by

a line to the residence site of the datum. It is obvious, therefore, when two references are

made to the same datum object, that just one object is involved, not two.

This section will provide a brief word-description of GRAPPLE. The description will not

serve as a user's manual: a short user's manual has been ouilt into GRAPPLE, and there is

some prospect that a person who knows some LISP or MDL will be able to get started with

only five or ten minutes' instruction plus the built-in user's manual (or tutorial). Nor will

- the description serve to support clear visualization of the diagrams presented by

GRAPPLE. The aim here is just to convey the general idea. To go beyond that, there is

no substitute for actually interacting with the program.

o

-- -

5.2. GRAPPLE's Initial Menu

GRAPPLE is a program. It exists as source language files and as what in MDL is called a

file of partly executable, partly interpretable code. We assume that a programmer will

carry out a multi-session programming project with a ,,t'(file and its descendents. At the

beginning of the first session, the programmer loads the initial eatve file, say grapple save,

into a Digital Equipment Corporation VAX computer (with BBN Computer Co. BitGraph

terminal) operating under the Berkeley Unix 4.2 or 4.3, by typing mudsub grapple save

and then a line-feed. (Although both programs can deal with both cases, Unix mainly uses

lowercase letters, and MDL uses mainly uppercase letters.) Then, when the character string

"RESTORED" appears on the screen, the MDL interpreter is running. The programmer starts

GRAPPLE by typing <G> and a character that we shall call the D0-4' character. For the

VAX computer with BitGraph terminal, the DO-IT character is the line-feed character.

After a short interval during which GRAPPLE loads a special font of characters,

GRAPPLE presents the initial menu. This menu provides five alternatives. If the

* programmer is using GRAPPLE for the first time, he or she should select alternative 0,

* which will first describe the layout of the GRAPPLE screen and then initialize GRAPPLE

for a series of programming operations. If the programmer knows the screen layout but is

embarking upon a new series of of programming operations (or a single operation that will

stand entirely by itself), the programmer should select alternative 1. If the programmer is

resuming work and wants to begin a subseries of programming operations with a clean slate

insofar as global variables are concerned, he or she should select alternative 2. If the

programmer is resuming work and wants to begin a new function or liacro or other top-

level datum object, he or she should select alternative 3. And, if the programmer is

resuming work broken off in the middle of the preparation of a function or macro or top-

level datum object and wants to add a new component (and is very familiar with the

system -- otherwise avoid this option), he or she should select alternative 4. Thus the first

two of the five alternatives initiate an over-all programming venture and differ merely in

showing or not showing a diagram of the screen layout. The last four of the five

alternatives differ in respect of the amount of initialization action they take, and the last

three of the five are for partial reinitialization when resuming work. Alternative 1 (as, also,

alternative 0) initializcs everything that can be initialized. Alternative 2 does not initialize

the menu of operators, does not make you lose access to what you have programmed thus

far in a series. Alternative 3 does not even initialize the situation with respect to global
variables. Alternative 4 does not even initialize the situation with respect to function and

macro parameters and local variables. Note that ioitializiig t/h siltIti,, .ith ,'Cct to

v,,A/,/'., is different from ifiidizi.g raribllc,. When the situation with respect to global or

19

0L

*r~~ &". :,:s K W.~'"eV S7\.~.
AXA

to local and parametric variables is initialized, the residence sites for that kind of variable

are cleared They cease to be residence sites, and the names by which the variables were

known to GRAPPLE cease to serve, until rebound to values, as the names of variables.

When variables are initialized during the execution or interpretation of a program, in

contrast, the variables are given values or, more precisely, values are bound to the names of

the variables or values are inserted into the locations allocated to the variables.

5.3. Programming Sessions and the Save File

A programming session is a period of time during which the programmer is seated,

presumably at the console or terminal. The programmer is free to break his or her course

of interaction into sessions however he or she pleases. It is assumed that, at the end of

each session within a series of programming operations, the programmer will create a new

~~t file by selecting the item Save in a menu of general operations shortly to be discussed.

Then, at the beginning of the next session, the programmer will restore that sate file by

using the mudsub command to the Unix operating system. Thus the series of save files (of

which earlier members may be discarded) will accumulate the results of the programming

* operations, and the whole product of the (multi-session) series will reside in the final save

file. There are, of course, facilities for filing away the results of programming as they are

achieved. The product of the series may therefore exist redundantly, in the final save file

and in various text files made in response to specific instructions from the programmer.

5.4. Compiling

GRAPPLE does not deal with compiling. It creates MDL source-language objects. Objects

such as functions and macros may be compiled later on a VAX or DECSYSTEM-20

computer with the MDL compiler called MIMC for Machine Iidependent MDL Compiler despite

the fact that running on only two different machines does not make it very machine

independent.

5.5. The Screen Layout

V GRAPPLE responds to the selection of any item from its initial menu by laying out the

display screen in a pattern that is maintained, in its essentials, throughout a programming

series. The layout pattern is explained briefly by the action of GRAPPLE in response to

the selection of alternative 0. The layout has 9 main parts. (It would be better if it could

be made simpler without leaving anything out.)

The center of action and attention for the GRAPPLE programmer is a large square in the

central part of the upper half of the screen. At the outset, this square represents a general

02

20

0!

MDL object. The task of the programmer is to give structure and content to the square by

issuing commands, mainly with the mouse, that specialize the square into the GRAPPLE

represention of the program (or data set) the programmer has (more or less clearly) in

mind.

To the extreme left of the central square is a tall, narrow menu of 32 general programming

operations. It is called the main menu. The first item in the main menu is ?Main, and by

selecting it and then selecting any other item, you can have GRAPPLE print out a brief

explanation of the other item. (That sentence is still correct if you remove the two

instances of other.) We shall return to more detailed examination of the main menu.

In between the main menu and the central programming square is the residence area for

global data -- not for the built-in operators or programmed operators of MDL, but for

* global data to be used as data by programs under construction.

To the extreme right of the central square is a tall, narrow menu of 32 items, most of which

are icons representing data types and classes. (Although 12 of the items are not icons

0 representing either data types or data classes, the menu is called the menu of data types and

classf.; or DtC, and selecting ?DtC in the main menu and then an icon in DtC menu will get

you a brief explanation of the icon.

In between the DtC menu and the central programming square is the residence area for

function or macro parameters and local variables to be used by programs under

construction.

Disposed horizontally just beneath the five areas just described, there is an area (the .40clf)

for miniature copies of program structures prepared by the programmer. Selecting Down

from the main menu will create a miniature copy of the body of a recently completed

function or macro and send it down to the shelf, and selecting Up will expand a miniature

copy of a structure that is on the shelf and put it back up in the main programming

square.

Just below the shelf is a menu of operators (the R menu) that can be thought of as three

menus: a menu of built-in operators, a place to put auxiliary menus, and a menu of

auxiliary menus. Together, they comprise eight lines. The first three lines are filled with

% short or abbreviated names of the most frequently used built-in MDL operators. The next

four lines are vacant, waiting for submenus to be loaded by the programmer. The last line

* -is the menu of auxiliary menus. Selecting ?R from the main menu and then the short or

21

-
-8A

abbreviated name of a built-in operator confirms the name if it is the full name though

short or yields the expansion of the name if it is abbreviated. ?R does not work for other

names (i.e., names of auxiliary operators) in the R menu.

Just below the menu of operators is a row of four mode indicators. These tell the

programmer whether or not the presentsituation calls for programmer's initiative control or

programiner's responsive control, what kind of action (if any) the program is expecting the

programmer to take, and what kind of action was taker. the last time action was taken.

Finally, there is a fairly large area in which the programmer and GRAPPLE communicate

in text. GRAPPLE puts out quite a lot of text, telling the programmer (more verbosely

than the mode indicators) what the situation is and what GRAPPLE expects him to do.

Sometimes, in its present state, GRAPPLE displays text faster than anyone can read it.

When it does that, it is usually trying to figure something out about the compatibility of

data types and classes and the printout is somewhat like subvocalization. The programmer

does not need to know, in those cases, what he cannot read. When the programmer is

called upon to respond by typing something on the keyboard, his or her response is echoed

in this text area.

5.6. Programming a Very Simple Function with GRAPPLE
Before going into more detail about the various areas of the GRAPPLE display screen, let

us exercise GRAPPLE by programming a very simple function. Let us prepare a function,

which we shall call sq, which will return the square of its one argument, which must be a

real integer or a real continuum number. (This example, and the sum-of-squares example that

comes later, are dealt with more fully and more effectively in the user's manual that is built

into GRAPPLE.)

We have loaded a GRAPPLE save file, we have typed <G>, we are looking at the screen

layout described, we have a keyboard before us, and we have a mouse in hand.

In the central programming area, the initial display is a large square (a square rectangle--

no connection with the fact that the function we are programming is going to square

numbers). The square is the simplest example of a category of figures we shall call picts,

which are drawn with lines, to distinguish them (from here on) from the small pictures

composed with FONTED, which we shall continue to refer to as icons. In the square are three

icons, one in the middle signifying general object, which is what the square represents, one on

the left signifying applier, which is what we want the body of our squaring function to be,

0

V V

and one on the right signifying general datum, in which we are less interested right now.

It is a general rule of GRAPPLE that, if there is an icon in the middle of a pict, the icon

signifies something about the nature of the pict. Thus there is a general object icon at the

center of the square that represents a general object.

Not being very sure about what to do, we select the middle icon, the one at the center of

the square. Selecting it does no more than to cause GRAPPLE to display some information

and suggest that we select the left-hand icon, which is what an experienced GRAPPLE

programmer would have done at the outset. We then select the left-hand (applier) icon with

the mouse, moving the mouse in such a way as to make the mouse cursor (a +-shaped figure

that moves about the screen as the mouse moves about the desktop) come close to the

applier icon and then pressing the middle button of the mouse. The mode indicators and

text in the text area thereupon ask us to confirm or disconfirm the selection. Another

general rule of GRAPPLE is that each step involving selection with the mouse is followed

by an opportunity to confirm or disconfirm. The left-hand button of the mouse confirms;

the right-hand button of the mouse disconfirms. We press the left-hand button and,

thereupon, the square representing the general object turns into, or is replaced by, a square

%. that is divided into two rectangles by a vertical midline. It represents an applier, and in the

middle of it, superposed upon the midline, is an applier icon, a small rectangle with a line

down the middle. To the left of the applier icon is an operator icon, and to the right is an

operand icon.

We are programming a squaring function, and we are now at the point of selecting the

operator for the one and only expression of the body of the function. We therefore select

the left-hand icon, the operator icon, and confirm the selection. The mode indicators and

*text area then ask us to select the operator from the operator menu. It accepts the mouse

cursor, and we position the cursor over the operator *.

When instructed to use the operator *, GRAPPLE has to ask a supplementary question.

The multiplication operator of MDL can accept any number of operands, and GRAPPLE

needs to know how many operands there will be. It therefore asks us, in the text area, and

asks us to respond via the keyboard and to terminate the response with the DO-IT

• character. Inasmuch as we want a function that will square a number, we say that there

will be 2 operands. After a short interval of computation, a rectangle slightly smaller than

%. the left-hand half of the divided-down-the-middle applier rectangle fits itself into the left-

hand half to represent the operator. In the middle of this rectangle is an operator icon and

23

to the upper left is a * label. At the same time, two smaller rectangles, which just happen

to be squares, fit themselves, one above the other, into the right-hand half of the applier

square. They represent the two operands. The applier icon is still in the center of the appler

square. An operator icon is in the center of the operator rectangle. And an operand icon is in

the center of each operand square. To the upper left of each operand icon is an applier icon,

for use in the event that the programmer decides to develop the operand as the result of

applying something to something, and to the lower right is a datum icon for use in the

event that the programmer decides to supply a datum directly, either as a literal datum or

as a parameter or local or global value. In the current case, the datum icon is a real icon

because the multiplication operator works only with data of type real integer or type real

continuu t nunber, i.e., of class real.

We want to supply the same number to each of the two use sites, i.e., to the location of the

real icon in each of the two operand boxes. We want this number to be the one argument of

the function we are defining. We begin with the upper operand box and, with the mouse,

select its real icon and confirm the selection. Then we signal, with the left-hand and right-

hand mouse buttons, that we want a nonliteral datum and that we want a new datum.

GRAPPLE then asks us to choose a residence site for the datum. We select a residence site

in the datum area to the right of the central programming square -- in the left-hand

column of that area, which is labeled R for required parameter. Then GRAPPLE asks us to

choose a data type or class. The DtC menu accepts the mouse cursor, and we choose and

confirm the real icon. GRAPPLE checks that real meets the requirement of the program

under construction (which it does, trivially, inasmuch as real was the class required, and

then GRAPPLE asks us to supply an illustrative value for the parameter. We type 7,

which is of type ral integer and therefore of the class real. The 7 takes up its abode at the

selected residence site, underneath a rcal icon, and a splne forms, connecting the residence

site to the use site.

For the other operand, we want to use the same required argument. We select the real icon

in the second (lower) operand box and confirm it. Then we signal, with two clicks of the

right-hand mouse button, that we want a nonliteral datum and that we want to use an old

one, already set up at a residence site. Then we select the residence site of the 7 by moving

__ the mouse cursor to the 7, and we confirm the location. Thereupon, a second spline forms,

* connecting that residence site to the second use site.
4,

That completes the programming of the body of the function. All we have to do to

complete the function definition is to signal to GRAPPLE that we have completed our part.

2-4

0ICVI
4, -,I

, I

At this point, however, we pause to check the operation of the body of the function upon

the illustrative datum we supplied, the 7. We select and confirm Eval from the main menu,

and GRAPPLE responds by printing 49 in the text area. Then, to indicate that we are

finished programming the function, we select and confirm FiniF from the main menu.

GRAPPLE first shows us the result of processing the most recently programmed expression

and packaging it as a function. (This is u:eful when one is programming a multi-expression

function, but it is a bit redundant when, as currently, one is programming a function that

will have as its body a single expression.) Then GRAPPLE asks for a name for the whole

function. We type sq on the keyboard and terminate it with the DO-IT character.

GRAPPLE then displays the MDL text of the new function definition:

<DEFINE sq (r.1) <* .r.1 r.l>>

We foresee that this little function will be useful, so we select and confirm Down and then

File and then MuGrP from the main menu. Down puts a miniature copy of the new function

(with its name above it as a label) on the shelf. File files the new function, together with

all the paraphernalia for displaying it graphically, away in a Unix file, and MuGrP puts the

name sq into the first unused slot in the operator menu and prepares an entry for the data

base that describes operators.

Even though the foregoing yielded only a trivial program, it illustrated the use of the

central programming area, the main menu, the R menu, and the DtC menu. Let us turn,

now, to fuller examination of those menus. Then we will use the function sq in

programming a function that will sum the squares of the numbers in a structure of

numbers.

5.7. The Main Programming Operations of GRAPPLE -- The Main Menu

A programmer using GRAPPLE intends to prepare a MDL program, and a MDL program

typically consists of functions and data sets, sometimes also of macros. Usually, there are

more functions than data sets or macros, and GRAPPLE assumes, unless it is told

otherwise, that what the programmer wants to do when he gets a fresh GRAPPLE or

completes something by selecting item FiniF from the main menu is to prepare a MDL

function. In the course of creating a program, however, there are quite a few other things

to do, and quite a few specific things to tell the programming system. It will serve as a

general introduction to GRAPPLE if we examine briefly a set of these other things that are

dealt with through the main menu.

25

0111 1 III' 1 '

* We have already dealt with the first three items of the main menu, which provide

expansions or explanations of items in menus. Here, briefly, is what the other 29 items do:

Chkpt Let the programmer record the state of GRAPPLE at a particular point
in time (colloquially, create a checkpoint) or go back to a state checkpointed
earlier.

Decl Insert declarations into the argument list of the function or macro most
recently created.

Down Make a miniature copy of the most recently prepared function or macro
and put it down on the shelf.

Embed Select a location in the object that is in the central programming square.
Select a miniature structure from the shelf. Select a top-level expression
from the body of the function or macro represented by the miniature
structure. Embed that expression in the object in the central
programming square at the point selected.

Erase Erase the central programming area, the main menu, and the residence
sites for global variables, function and macro parameters, and local
variables.

ErrRt Error return. Return to the top level of the MDL interpreter. (For use
after an error condition has arisen.)

Eval Evaluate the expression most recently programmed. This evaluation uses
as the values of parameters the values provided a illustrative values or
default values or local values as the expression was being programmed.
Eval ceases to be capable of evaluating an expression at the time the
programmer declares, by selecting FLniF or FLniX, that he is finished
with the expression and wants to proceed.

File File, using a filename that is the name of the function or macro plus the
extension .mud, the function or macro most recently programmed,
together with its tree and all its hieros. (The programmer need not be
concerned with the tree or the hieros, or even what they are.)

Find Find the presently displayed or non-displayed menu in which a specified
operator or specified data type or class is located (and its index in that
menu).

FiniF Finish function. The programmer has completed the body of a function
or macro, so package the body and the argument list into a function or a
macro and get a name for the new function from the programmer.

FiniX Finish expression. The programmer has completed a top-level expression,
so rearrange the display in the central programming area in preparation
for the programming of another top-level expression.

26

GIb Create a global datum with a residence site in the globa. data area.

Glbs If the global data have been removed from the screen, return them to
their residence sites and redisplay them.

Icons If the miniature copies of programmer-defined functions and macros have
been removed from the shelf, redraw them in their old locations.

Init Present a menu for initialization that is like GRAPPLE's initial menu
except that it works with the mouse and includes, in addition to the five
alternatives of the initial menu, three special reinitialization alternatives.
They are: (1) to reinitialize the mechanism for deferred definition, i.e., for
forward reference to a function or macro not yet defined; (2) to
reinitialize the situation as regards global data; and (3) to reinitialize the
arrangement that keeps track of the component diagrams that have been
used and prevents confusion between what has been used and what
GRAPPLE will create to represent new programming strucutres. The
third special reinitialization is drastic: in effect, it destroys all the
graphic structures that have been defined thus far.

Macro Give the programmer a chance to make the next-constructed top-level
object be a macro instead of a function (or to change his or her mind and

* go back to the default, which is to create a function).

MuGrP To the menu of operators from graphical programming. Put the name of
the function or macro most recently defined by graphical programming
into the menu of operators (the R menu) and create a data-base entry for
it.

MuMDL To the menu of operators from MDL. Put the name of a specified MDL
object into the menu of operatorb and create a data-base entry for it.

More Disregard the fact that the programmer has indicated that he or she is
finished with the programming of a function or macro and prepare to
add another top-level component to the function or macro.

New-t Prepare to define a new data type.

Ratch Ratchet. Ordinarily, the data base of operators that GRAPPLE knows
about is initialised, via initialization 0 or initialization 1, by being copied
from a data base called the initial data base. Selecting the item Ratchet
replaces the initial data base with a copy of the currently working data
base, which contains not only the information from the initial data base
but also information about functions and macros the programmer has
constructed. Ratchet thus updates the inital data base to include the

* newly programmed objects. The only way to get back to the "initial
initial" data base after ratcheting is to load a file. The file can be either
an old save file that contains the "initial initial" data base (which returns
the whole graphical programming system to the state recorded by the
saving) or a text file that contains a copy of the "initial initial" data base.
The file initial-grapple-data-base.mud contains a copy.

27

I0i

* ReDrw ReDraw the program diagram corresponding to the current program tree.
This assumes that a hiatus has been introduced by the use of the Erase

menu item.

Res-t Result type. Accept the designation of a data type or class and then
ensure that the next function or macro constructed by graphical
programming will return an object of that type or class.

Retry Retrieve. Retrieve the contents of a Unix file, the name of which is to be
specified. In MDL terms, the contents will be FLOADed into the MDL
interpreter. If the retrieved file is one created by the File menu item,
then it should be a file of information from the present programming
series. Otherwise, some of the structures in the file may overwrite
structures in the present system.

Save Save -- i.e., checkpoint, i.e., record the current state of the system -- in a
MDL 8ave file with the filename that the user will specify (and with the
extension save). This operation takes about a minute.

Sgmnt Give the programmer a chance to make the next object to be constructed
by graphical programming be a MDL segment (consisting of the contents

of a structured object without the container) instead of (if indeed it is
going to have contents) a full-fledged structured object. (Also give the

programmer a chance to make the system revert to the default state,
which is to keep the containers of structured objects.)

Tree Erase what is currently displayed on the screen and display the program
tree that contains all information about both the expressions of the
function or macro that is under construction and the graphics used to
represent them. (The programmer can stop the display of the tree, which
will occupy several screenfuls, by holding down the control key and

pressing the G key and then can restart the display of the tree by typing
<ERRET T> and then the DO-IT character.) When the tree has been
displayed, GRAPPLE erases it and redisplays what was on the screen
before. This mechanism is, of course, for programmers who understand
the tree structure and something about how GRAPPLE does what it
does.

Up Erase what is in the central programming area and draw there a full-
sized copy of a miniature structure selected from the shelf.

tCChk Type and Class Checking. Turn on or off the mechanism that
GRAPPLE uses to make sure that the data types and classes specified in
the program under construction are compatible with the operators that
are specified. Even when this checking mechanism is turned off, the basic
type-checking mechanism of MDL will be operating - unless it, too, has
been turned off. To turn it off, type <DECL-CHECK %<>> and press the
DO-IT key. To turn it on, type <DECL-CHECK T> and press the DO-IT key.

28

5.8. Operators and the Menu of Operators

The operator menu is used during the construction of a function or macro to identify

component operators.

GRAPPLE is in a sense both a language and a programming system. Both the language

and the system are graphical, but in both cases the graphics are diluted with some

alphanumeric text. For instance, most of the names of built-in MDL operators are text

names. And that fact immediately raises a problem that makes GRAPPLE harder to learn

than it should be. The problem is that GRAPPLE needs, or at any rate tries, to present a

lot of operator names in a menu simultaneously, between 72 and 144 of them, and that

imposes a requirement for short names. GRAPPLE's names for operators are therefore

usually abbreviations of MDL's names for the same operators. At present, the

abbreviations are 1, 2, or 3 letters long. We recognize that such short abbreviations cannot

cope with large sets of operators and that it would be very helpful to have on tap a few

thousand operators. One of the next changes will be, therefore, to raise the limit on the

length of operator names, probably to seven for programmer-defined operators and

infrequently used built-in MDL operators.

But let us describe what exists now: As indicated in the introductory description, the menu

of operators can be viewed as having three parts. The first of them (three horizontal lines)

contains three special menu labels and short or abbreviated names of 89 built-in MDL

operators.

iThe three special labels are +++, XIT, and DFR. +++ calls for additional, supplementary lines

of menu. XIT is useful if your mouse is in the operator menu and you would like to get out

without selecting an operator. DFR is useful if you want to refer to a function or macro

that is not represented in the menu -- and may not even exist yet, as is the case during the

definition of a recursive function.

* The 89 operators with short or abbreviated names are in part self-explanatory (to people

- who know MDL or ITSP), in part not. Explanatory expansions, in most cases MDL

equivalents, are shown in parentheses:

& (AND) * + /
0? 1? = (SET) == (SETG) ==? (IDENT?)
=? (EQUAL?) A (APPLY) ASC (ASCII) ATN (ATAN) BNL (CR-LF)

C (STRING) CMP (STRCOMP) CND (COND) COS CD (PNAME)
EM? (EMPTY?) EXP G=? (GR-EQ?) G? (GR?) I-C (ISTRING)
I-L (ILIST) I-U (IUVECTOR) I-V (IVECTOR) L (LIST) L=? (LS-EQ?)

L? (LS?) LN (LOG) LNG (LENGTH) MAX MEM (MEMBER)

29

.1,011111~~~rr 1111 1 Jl 1,11

* MIN MOD MP1 (MAPF) MPL (MAPLEAVE) MPR (MAPR)
MPS (MAPSTOP) MP_ (MAPRET) PAR (PARSE) PR (PRINC) PRG (PROG)
PRI (PRIN1) PRT (PRINT) RD (READ) RPT (REPEAT) RST (REST)
RTN (RETURN) SIN SQT (SQRT) TYI U (UVECTOR)
UNP (UNPARSE) V (VECTOR) VAL (GVAL) X? (STRUCTURED?)
f (FLOAT) I (FIX) iTH (NTH) m? (MONAD?) mem (MEMQ)
or (OR) t (TYPE) t? (TYPE?) q (QUOTE) val (LVAL)

(The mnemonic that makes MP_ a deviously reasonable abbreviation for MAPRET is that

ASCII character number 95 (decimal), which now usually prints as an underbar, used to

print usually as a back arrow, and back arrow is not too far from the meaning of

MAPRET: send something back to the place where the result of this mapping operation is

being accumulated.)

Below the four vacant lines is a line of labels that stand for submenus. It seems best, from

the present point of view, to replace the contents of this line with the letters of the

alphabet and the decimal digits. There would then be a submenu for each letter and each

digit.

'N 5.9. Data Types and Classes

Each object in MDL is a member of a category of objects called a type. The term class is

not a MDL term, but it is used in GRAPPLE in the way to be described. It is used in

other languages in other senses than the present one. Because there are not enough terms

like type, class, set, category, and ilk to go around, GRAPPLE finds itself using class to stand

for a group of objects that includes members of more than one type. Perhaps the

prototypical example is the class real which includes real fixes and real floats. (This matter

is difficult to discuss in a computer context because most computer languages speak of

*Z intcgr. as separate and distinct from real numbers, whereas of course real integers are just as

real as real fractions. At the present time, GRAPPLE is quite as confused as the rest,

setting integers and continuum numbers into contraaistinction despite the fact that,

mathematically speaking, real integers reside on the real continuum along with all the

0 fractions and despite the fact that computers do not have the denumerably infinite storage

capacity to represent integers, let alone the nondenumerably infinite storage capacity to

represent continuum numbers.) In any event, GRAPPLE distinguishes classes of objects as

well as types of objects. Any MDL object at all is a member of the class 0, or general

object. Any MDL object that has structure (i.e., is capable of containing members) is a

member of class X, or structure. And any MDL object without structure, i.e., any

elementary or unstructured object, is a member of class o, or element.

30

0 In GRAPPLE, an effort is made to use icons instead of letters such as 1 (for the type real

integer), z (for the type real continuum number), r for the class real number, L for the type List,

and C for the type Character 8tring. It is not feasible, however, to print the icons in a report

such as this. It will have to suffice to describe them, and indeed most of the graphics, as

though the reader were looking at the display screen while programming.

Icons for the most frequently used data types and classes are presented in the menu of data

types and classes in the upper right-hand part of the screen. There are 32 items in the

columnar menu, of which 20 denote data types and classes. The first two icons resemble

the first two items in the menu of operators. They are a ++ sign and an XIT sign, and
their functions are analogous to the corresponding functions in the operator menu. The

last 10 items are the decimal digits. They are used sometimes as identifiers of auxiliary sets
of data types and classes and sometimes just as integers to be selected by the programmer

as input to GRAPPLE. There are two ways to give integers to GRAPPLE: with the mouse,

using the single-digit integers in the DtC menu, and with numeric keys in the upper row of
the main keyboard (but not in the numeric keypad). The rule that (except in one regretted

case, which is identified by the displayed instructions) governs which way to specify integers

is: use the menu digits if it is not possible, in the local context, for more than one digit to

be needed to constitute a single input integer; otherwise use the upper row of the keyboard

to type as many digits as needed and then terminate entry of the series of digits (which

may of course be a series of just one digit) with the DO-IT character.

The icons representing data types and classes are special characters designed on a matrix 10
pixels high and 10 pixels wide. From top to bottom, they represent (3) general object, (4)

general datum (equivalent to general object because any MDL object can be treated as a

datum), (5) operator, (8) monad (if structured, empty; otherwise elementary), (7) element,
(8) atom, (9) byte, (10) character, (11) real, (12) real integer, (13) real continuum number,

(14) structure, (15) list, (10) vector, (17) uniform (vector) (MDL UVECTOR), (18) character
string (MDL STRING), (19) byte string (MDL BYTES), (20) false, (21) applier (MDL FORM), and

* (22) function.

If the desired data type or class is not in the permanent menu of data types and classes,

select the top item, which resembles +++, and then select the appropriate one of the

integers, the one that identifies the auxiliary set of data types and classes that includes the

one you want. At the present time, only the 0 is used for additional data types and classes,

,,i so there is no problem in remembering in which set a particular auxiliary data type or class

is located. For the hypothetical future, when there may be more data types and classes,

31

the Item Find in the main menu will help you to find the correct submenu.

The auxiliary set (0) of data types and classes at present includes the following data types

and classes (with the GRAPPLE name first, the MDL name, if any, or otherwise the

expanded GRAPPLE name, second):

1. reserved for Z, FRAME,

2. no longer used, was MDL ENVIRONMENT,

3. Y, ASSOCIATION,

4. reserved for N, Number,

5. reserved for K, Complex,

6. P, POINT,

7. reserved for Q, QUANTITY,

S. n, scalar,

9. f, continuum,

10. h, integer,

11. u, reserved for imaginary,

12. y, reserved for continuum imaginary,

13. -eserved for Integer imaginary,

14. k, index,

15. reserved for S, SET,

16. W, TUPLE,

17. I, Uniform of integer reals (UVECTOR of FIXes),

18. T, TEMPLATE (also used to represent IT' for 'true'),

19. reserved for d, Date,

20. reserved for t, Time,

21. no longer used, was H, HANDLER (of interrupts),

22. J, MACRO,

23. M, MSUBR,

32

0K

24. 1, Local value (identified in MDL by prefixed period),

25. g, Global value (identified in MDL by prefixed comma),

28. s, SEGMENT,

27. =, CHANNEL,

28. unused,

29. unused,

30. unused,

31. unused,

32. unused.

The unused icons are available for use by the programmer. If the programmer wants to

substitute other icons for the unused ones, that is fairly easy to do with the FONTED

package.

5.10. Programming a Function to Determine the Sum of the Squares

The function that we now wish to program, let us assume, is one that will compute the sum

of the squares of the numbers in a structure (e.g., a list, a vector, or a uniform (i.e., a MDL

UVECTOR)) that will be provided to the function as its one and only argument. We have a

function, sq, that will square individual real nrumbers, and we intend to use it as a

component of the new function.

We need to reinitialize GRAPPLE. We therefore select and confirm Init from the main

menu. GRAPPLE presents a menu that is similar to the initial menu but offers three

additional alternatives. Since we want to begin on a new function, it is appropriate to

select initialization level 3, for FUNCTION. GRAPPLE erases parts of the display and

redraws parts. Again we see the general object square in the central programming area.

There were no global variables before, and there are none now. The slate of parameters

and local variables has been wiped clean.

The strategy we adopt for determining the sum of squares is a simple one based on the use

*of one of MDL's mapping operators. The operator MAPF (abbreviated MP1), when given

three arguments, applies its first argument to the accumulated results of applying its

second argument to each member of its third argument. So, if its first argument is the

addition operator, its second argument is a squaring operator, and its third argument is a

0
0 33

0 structure of real numbers, it will return the sum of the squares of the real numbers, which

will, of course be a real number. It will be a real integer if all the members of the structure

are real integers, and it will be a real continuum number if any one or more of the members of

the structure is or are of type real continuum number (and the rest, if any, are of type real

integer).

Pursuing that strategy, we select and confirm the applier icon from the general object square.

GRAPPLE substitutes an applier square, with the now-fr niliar line down the middle. We

select and confirm the operator icon, and GRAPPLE asks us to specify the operator. We

select and confirm MP1 from the operator menu, and GRAPPLE asks us how many

operands our use of the operator will take. (If we are unsure, it is all right to overestimate,

but not to underestimate.) We respond from the keyboard, as requested to, with 3.

GRAPPLE fits an operator rectangle (with the label MP1) into the left-hand half of the applier

and three operand rectangles into the right-hand half. These operand rectangles have operand

, 'icons at their centers, of course, and applier icons in their upper left quadrants, and datum

icons in their lower right quadrants. The datum icon in the box representing the first

9" argument is actually a list of two icons, indicating that the object whose residence site is

*connected to that use site must be either a false or an operator. The datum icon in the

second argument box is the function icon. And the datum icon in the third argument box is

- . the structure icon.

We begin with the first argument. We want to accumulate the result with the + operator,

so we select and confirm the datum icon of the first argument box, signal to GRAPPLE

that we want a literal datum, and type , + on the keyboard and terminate it with the DO-IT

character. The comma followed by the plus sign represents an object of type VAL (MDL

GVAL). The value of the VAL will be the addition operator, since the built-in operators of

MDL are bound as global values to the atoms that are their names. The label ,+ replaces

the datum icon of the first argument box.

The procedure just outlined involves using a bit of syntax -- the prefixed comma to specify
'global value of' -- that is essentially MDL and not GRAPPLE. A way of specifying the
operator associated with a name without using that bit of MDL syntax has been programmed
into GRAPPLE, but let us make do with the comma notation here.

Turning to the second argument with the aim of making it be the squaring function already

prepared, we select and confirm the datum icon, which is the function icon, of the second

argument box, and we signal to GRAPPLE (with the mouse's left-hand button) that we

<.4 want a literal datum again. We type sq on the keyboard ardt terminate with the DO-IT

character. (It turns out that we shall not in this case use the menu item sq that we put

-1.

34

%
~%4 . ~ Z

Zk z)UN

into the operator menu with MuGrP. Inasmuch as we are using the squaring operator as an

operand of the mapping operator, it is appropriate to specify it by one of the regular means

of specifying operands.) The label , sq replaces the datum icon of the second argument box.

Turning to the third argument with the aim of making it be a structure of numbers that

will be the one parameter of the sum-of-squares function, we select and confirm the datum

icon of the third argument box and signal GRAPPLE, by clicking the right-hand mouse

button and then the left-hand mouse button that we want a datum that is nonliteral and

new. (Incidentally, GRAPPLE is providing rather detailed instructions, just in case we

have not performed the procedure so often that it has become rote.) Then, again in

response to instructions, we select a residence site for the third operand of the MP1

operator. We do so by chosing and confirming a location (any location) in the R column of

the residence area to the right of the central programming square. Then GRAPPLE asks

us to choose a data type or class. In order to make the function as generally applicable as

possible, we choose the class structure. We note that there is a problem here, that the class

structure is even too general for what we want, which is a structure that contains only real

numbers, and we resolve to keep in mind that trouble could arise if, for example, we tried

to apply our new function to a string of characters. But we do not want to divert now

from our immediate task. So we confirm the selection of structure and type, as an

illustrative value, (1 2 3). A spline forms, connecting the residence site of the (1 2 3) to

the use site in the location of the datum icon in the third argument box.

Before declaring that we are finished, we evaluate the expression, using the illustrative

datum, by selecting and confirming Eval in the main menu. GRAPPLE types the result --

14 -- of the evaluation in the text area. Seeing that the result is correct, we select and

confirm FinlF from the main menu and name the new function sos. For future reference,

we select and confirm, also, Down, File, and MuGrP.

5'%

Finally, not being fully satisfied with the single test afforded by the illustrative value (1 2

* 3), we test sos further by using it as an ordinary MDL function, which it is. We use the

text area to type to the MDL interpreter, which is listening at all the times when the first

mode indicator indicates PROG'S INITIATIVE.

<SOS (3 4 5)>
• 50

~<SOS [1 2 3 4 51]>

55

<sos ![100 -100]>

35

-jW

20000

And so on. (But note that this testing has been done symbolically in the language MDL,

not graphically in the language GRAPPLE.)

JI

Sl

I.I

S

6. A Tutorial User's Manual
If a concept demonstration system such as GRAPPLE is going to be examined by people

outside the immediate developing group, the system must have some kind of instructions

for use, some kind of user's manual. The creation of such a manual, however, is a

considerable task, a task that could escalate into a project comparable to the development

of the demonstration system, itself. The approach we have taken to the preparation of a

user's manual was determined mainly by the fact that it is very difficult, or impossible, to

deal effectively with continually changing displays in a static medium such as print on

paper. We have built most of the user's manual into GRAPPLE. That is not to say that

the user's manual is designed into GRAPPLE. GRAPPLE was substantially completed when

we began to consider how to incorporate the user's manual. Nevertheless, the user's

manual does have a 'sense' of what the user is trying to do, or should be trying to do, and

it does put the instruction and advice into close association with the particular items of

interaction to which they pertain.

The user's manual has two main parts: (1) 'Ink-and-Paper Part of GRAPPLE User's

Manual' and (2) the part that is built into the program GRAPPLE. Except for an eight-

page list of abbreviations, acronyms, and expansions, the ink-on-paper part is just seven

pages long. The user should read it first. It deals mainly with how to get GRAPPLE

started, how to turn on the user's manual, and what the main limitations are. Almost all

the information about how to use GRAPPLE, once it is running, is in the part of the user's

manual that is built into GRAPPLE.

The part that is built into GRAPPLE consists, itself, of two parts. The main one of the

two parts is based on nine exercises and provides instruction and explanation related to the

exercises. The minor one of the two parts explains the items in the main menu and the

menu of data types and classes whenever, in the process of using or creating a program,

they are selected and confirmed.

Of the nine examples with which the major part of the built-in user's manual is concerned,

the first two are examples of how to use existing operators to process data. The last seven

are examples of programming which, within the context of MDL and LIST, is mainly a

matter of defining functions (and turning the definitions into actual functional objects that

can be applied to operands).

The major part, dealing with the nine examples, 'knows' which one of the examples the user

has selected. At each one of various strategic locations within GRAPPLE,there is acode

37

.4 ' 4.

that causes a digression to the user's manual if it is turned on. At each digression, a small

data base is updated, so GRAPPLE will know which visit this is to this specific location,

the first, the second, and so on. GRAPPLE then presents a file of information that is

appropriate to that place visited for that (ordinal number) time. The information is

displayed as a 'section' of one or more 'subsections', each subsection being short enough to

fit into the text display at the bottom of GRAPPLE's screen layout. When he or she has

finished looking at a subsection, the user must release it by pressing the left-hand or the

right-hand button of the mouse. Indeed, the user must release each of the subsections (and

thus release the section) before proceeding with his or her interaction with GRAPPLE.

The user's manual assumes some knowledge of LISP-like languages. The target is,

essentially, a person who is taking a first course in programming with LISP as its vehicle or

who is taking a more advanced, but not very advanced, course in LISP. We think that

some people may be able to deal with GRAPPLE on the basis only of the user's manual.

To be realistic, however, we should face it that a user's manual has to be debugged, quite

as surely as a program, and that there will no doubt have to be some person-to-person

communication to deal with problems not foreseen during preparation of the user's manual

and bugs not revealed thus far in the code of GRAPPLE. With reference to the latter, let

us say that the main parts of GRAPPLE have been used many hours during the last year

without encountering bugs or glitches, but that there are so many lines of interaction off

the main track that there has been no way to check them all exhaustively and there are

bound to be unfound bugs in them.

6

I-):

a38'Al

7. Issues in Graphical Programming and Monitoring
We conclude this report with a discussion of issues that appear, in part on the basis of the

experience provided by this project, to be the main present issues in the field of graphical

programming and monitoring. We shall try not to duplicate much of what was said in the

conclusions about graphical monitoring, but we shall touch upon most of the problems

touched upon in our report of October 14, 1984.

The main issues appear to be:

1. Whom, if anyone, can graphical programming and/or monitoring help?

2. What are the good things that graphics can do for programming and for the
understanding of programs?

3. What are the main limitations of present-day computer graphics that stand in
the way of exploiting the potential benefits?

4. Is there a sufficient or an appropriate effort to exploit graphics as an aid to
programming and/or understanding programs?

7.1. Whom Can Graphics Help?

As for who may be helpable, there appeared at the outset to be three main possible targets

for graphical programming and monitoring: (1) experienced programmers, (2) inexperienced

programmers, and (3) people who do not consider themselves to be programmers but who

work with spreadsheets, data management systems, word processors, and/or other software

that calls upon the user to direct the computer's Ictions on sets of numerical, graphical, or

textual data. Recognizing the third group led us to name it and to restructure the

breakdown: (1) experienced explicit programmers, (2) inexperienced explicit programmers,

(3) experienced implicit programmers, and (4) inexperienced explicit programmers.

As for how they may be helped, it appeared at the outset that the main ways were to help

them write programs and to help them understand programs written by others. Almost

immediately, however, the scope was broadened to include the updating of programs, which

involves writing but also understanding, and the use of programs, which does not quite

involve writing programs and involves understanding what they do but not how they do it.

So we think of (1) help in writing, (2) help in understanding, (3) help in updating, and (4)

* help in using programs.

The general conclusion in this area is time-dependent: Eventually, computer graphics will

help all four kinds of people do all of the four kinds of things that they try to do. In the

short term, limitations of the equipment for graphics will make it hardest to help the

39

S

w
I'l' 1~; 1101

people who do the most complex things and who are already good at doing them with the

aid mainly of symbolic techniques. So group (1), experienced explicit programmers, will in

the near term be the hardest to help; group (2), inexperienced explict programmers, will be

*easier to help; group (3), experienced implicit programmers, will be still easier to help; and

group (4), inexperienced explicit programmers, will be easiest to help. Thus we think that a

*graphical spreadsheet system for newcomers to spreadsheets might be a fairly easy project

%, with high payoff, whereas targeting more experienced users would complicate the problem

and escalate the requirements without increasing the benefit proportionately, and trying to

broaden the aspiration to embrace programming in nonrestricted domains would make

things very complicated and difficult. Looking back, we consider the selection of

GRAPPLE as a task to have been too much in the general purpose direction and too much

oriented toward programming instead of use of programs. However, it seems possible to

modulate GRAPPLE into a program-using aid without making it cease to be a

programming system.

Perhaps the general conclusion, if there is one, is that fairly strong constraints make

* computer projects feasible, and that the constraints appropriate to the newcomer, as
distinguished from the experienced programmer, and to the user, as distinguished from the

writer or updater of programs, are needed, at the present time, to keep computer system

developments from getting out of hand. Our considerable difficulty in getting promising

handles on facilitation of the understanding of programs is just what one would expect

from this point of view. There are infinitely many ways to misunderstand a program and,

presumably, the user of an understanding aid starts out misunderstanding a program. The

strategy one adopts at the outset of writing a program is in a sense a track, and it is easier

to help something stay on a track than to help it find and get back on the right track in

the presence of many wrong ones. This line of thought puts updating somewhere in

between writing and understanding.

One of the main sources of difficulty in working with large programs is the problem of

presenting in one viewing space all the parts of a program that are pertinent to a given

event or action. In a good programming language, program text can be marvelously

compact, and we do not see how to make a graphical representation that retains the

information of the program text and that is, for the average program, more compact.

Moreover, experienced explicit programmers have developed the skill of seeing the structure

of a program "in the mind's eye" -- which is to say that, in a sense, they already use a

graphical technique.

40

For inexperienced explicit programmers, we now believe, graphical programming and

monitoring can be extremely helpful. The help can come from two different directions.

First, graphics makes programming objects concrete and immediate, whereas symbolic

representations tend to make them abstract and mediate. By mediate, we mean not

them8elvea immediately present, but referred to by name. It is simply easier for people without

much programming experience to manipulate present objects directly than to control

absent objects by making patterns of their names. Second, a graphical programming

system seems more likely than a symbolic programming system to build a model that it can

understand and use of the program that the programmer is constructing. With such a

model, the programming system can be of great help to the inexperienced explicit

progrmmer -- can keep him or her out of several kinds of trouble and can even make

helpful, constructive suggestions. The first kind of help is essentially graphical. The second

is not, and it will surely be possible to realize some of its benefits in nongraphical systems.

But we envision that it will be possible, with graphical programming and monitoring, to

facilitate significantly both the learning and the performance of programming by

inexperienced explicit programmers. It may take a display with several million pixels and a

processor that executes several million instructions per second to do that, but that is

almost exactly what it is feasible, now, to devote to the undertaking.

For the near term, the target groups easiest to help will be the experienced and the

inexperienced implicit programmers. The inexperienced will be the easier of the two, but

they may not be as willing to invest in the required aids, and it may be the experienced

implicit programmers who actually receive the most help. In any event, implict

programmers are a very important category, much larger than the category of explicit

programmers, and usually much more closely involved in the activities that spell

measurable profit and loss or measurable success or failure for their organizations. In any

event, we are talking about most of the most creative and most productive users of

computers.

The kind of graphical aid to the use of computers and software that we have in mind is, for

one point of view, just an extension of the application of graphics, the "office metaphor",

that has been popularized in connection with the Macintosh computer, i.e., the use of a

mouse and icons to control actions of the operating system, the word processor, and so on.

But the nature of the extension is important. One key dimension of it is the dimension of

coherence or integration in the entire repertoire of software employed by the user. If the

user deals with a motley collection of independent programs, then no amount of graphics is

going to take the user much beyond the limits built into the individual programs. If the

41

'0 N
>x

user deals with an integrated family of precast programs that respect the group property of

data sets (what is output from one function is input to another), and if systematic use of

graphics is built into the programs, then it will be possible to carry something like the

desk-top metaphor down to useful depth, and the graphics will be significantly helpful. But

the real value of graphics will become evident when the user works with an integrated --

but also open-ended -- system of functions that run in an interpreter comparable to a LISP

or MDL interpreter. (Think of the personal computer as a LISP machine.) Then there will

be a continuum from (a) anplying a major program to m files of data tu (b) applying a

built-in operator to n integers. The user will see that it is ridiculous to feel at home

working with whole programs while fearing to enter the ominous zone of programming
where one works with parts of programs. Graphics will help reduce everything to a

common basis, and it will make the common basis concrete and "common sense". A good

graphical programming and monitoring system will turn a lot of implicit programmers into
explicit programmers, and that will substantially change the nature of software and its use.

The educational value of graphics will make itself felt in offices, laboratories, and schools.

* 7.2. Some of the Good Things Graphics Can Do
- We have mentioned various benefits at various points in this report, but it may be

worthwhile to make a definite list of them:

1. Make programs, data sets, and the actions of programs on data sets more
concrete and objective.

2. Give data a real presence. (In a symbolic program, one does not see the data;
one just sees references to it, usually to the names of individual items and
structures of data.)

3. Emphasize structure, both the structure of data and the structure of programs,
and to some extent separate the display of structure from the display of
content.

g 4. Provide several levels of abstraction, capable of dealing with corresponding

levels of detail. (In conventional programming, there is no intermediate ground
*between the full detail of program or data structure plus content and the mere

name of the program or data.)

5. Lay down constraints, especially syntactic constraints, to form a context within
which the programmer or user of programs can work. By analogy, provide a
map to the navigator and let him draw his course on it instead of on a blank

* piece of paper.

6. Mark the sources or locations of such crucial features as alterations of the flow
of control, side effects, optional arguments, operands that are never evaluated.
(In most conventional languages, these features have no distinctive appearance.)

42

Mi15

7. Appeal to the spatial sense that is allegedly so well developed in our society as a
result of extensive and intensive watching of television. (Or, to say much the
same thing another way: Depend less on abstract symbolic representation,
which, as an information processing skill, is not very well developed among
relentless watchers of television.)

Substitute regular, diagramatic structures for irregular, textual structures, and take

advantage of the eye's ability to detect deviations from regularity.

Avoid the difficulties posed by the fact that there are so many natural languages by

developing much further the international system of signs.

7.3. Limitations of Computer Graphics That Stand in the Way of Exploiting the Potential

Benefits

The graphical display and processing capabilities of some present-day computers are so

beautiful and so powerful that it seems unappreciative to speak of limiltations. On the

other hand, present-day graphics are simply unable to cope, at any rate in a cost-effective

way, with the levels of detail or amounts of information in large, complex programs, let

0alone processes. [Consider the (stationary, static) sequence of Instructions that is still

sometimes written on paper to be the program, the dynamic sequence of actions that

develops inside the computer when the program "runs" to be the process.] On balance, it

seems best to risk seeming unappreciative and to think for a short time about the

limitations.

Another approach to the limitations of graphics is historical. In 1959, one of us had the

early privelege of working at a computer console with a display capable of resloving a

million distinct points. The console on which this is being written, which is "state of the

art", also has a million pixel display. There is the difference that the display of 26 or 27

years ago was considerably more expensive. Also, it was a vector display, whereas the

present one is a raster-scan display. (It is not clear which is better for diagramatic

* graphics.) In any event, when you compare the capabilities of the computers as computers,

the comparison favors the present day overwhelmingly -- by a factor of a few thousand in

effectiveness per unit cost -- but when you compare their graphic display capabilities, you

have to conclude that things have gotten better graphically, over the 26- or 27-year period,

* by not more than a factor of 10 or 20.

1. Applications of graphics to programming require more and more graphical
capability as the target programs get larger and more complex. To display large
programs graphically will require much more powerful graphic displays.
According to our present picture of what is required, a minimal graphics system

43

0

for an experienced explicit programmer should have about 40 million pixels of
display area, which might be divided into I to 10 display surfaces of 40 million
to 4 million pixels each. That is a very stiff requirement by today's standards,
calling for ten times the display investment of an up-scale workstation or for
hardware that does not exist. As noted, the graphic display situation has not
been improving rapidly, at least as measured in terms of pixel count, but a
single 40-million-pixel display could probably be developed in a very few years, if
there were a concerted campaign to do so, and the kind of workstation we are
envisioning would then be economic. Perhaps, indeed, a concerted campaign is
under way: it appears that rapid strides are being made in Japan in the
development cf larger and Oearer flat displays, such as liquid crystal and
electroluminescent displays, and that applications in television may further
stimulate their development.

2. It may be a limitation of present-day graphics that displays are mounted
vertically, and it is surely a limitation that there is not, in widespread use, a
light pen with which the user can sketch and write as well as with a ball-point
pen. The two things are no doubt linked: if there were good, inexpensive
displays oriented in such a way that people could draw and write on them
conveniently, then there would surely be good, inexpensive light pens, and
possibly vice versa. A large desk-surface display and a high-resolution light pen
are key parts of every graphical programming or monitoring workstation that
we have envisioned.

3. A workstation for a graphical programming system or graphical monitoring
system for an inexperienced programmer or user should be, in our judgment, as
powerful as a present-day LISP machine or perhaps a VAXstation H. It may
take only one more step of cost reduction to make that much power quite
economically available. The Commodore Amiga and the IBM PC-AT and its
work-alikes seem to be right on the threshold. In principle, they can be
equipped with enQugh memory, and they are fast enough. What they need
most, we believe, is more display resolution. Perhaps it will be possible to do
the job with pop-up or pull-down menus and rapid substitution of one part of
the situation for another, but clearly things will be better If a whole "theatre of
operations" can be shown on a single display.

4. Applications of graphics to programming require rather large address spaces.
Computers such as the existing Apples (512 kilobytes or less of main memory)
and the IBM PC and XT (840 or less) are nowhere near adequate in terms of
either physical memory or address space. The Amiga and the AT and work-
alikes will in principle accomodate 15 or 16 megabytes of semiconductor memory

0without having to resort to bank-switching, and that, or even half that, is good
for the applications we foresee -- short of trying to deal with very large
programs and to help highly experienced programmers. The main limitation
that exists and restricts use of some of the machines just mentioned is that it is
difficult actually to fit, say, 8 megabytes of memory into the space actually

*available right now -- or that the add-on arrangements are not quite yet
actually available.

5. It is not clear that we should list the speed of present-day processors as a
limiting factor. In the development of GRAPPLE, even on the VAX-750 with
only one user, speed was always a problem, but it has been possible to make it a

44

tolerable problem by paying a little more attention to software efficiency, and it
may be that much better efficiency-oriented programming would solve the

problem entirely. It appears that GRAPPLE runs somewhat faster on the

VAXstation I than on the VAX-750. In any event, it is clear that computers
are rapidly getting faster. Our feeling is that the order of criticality is: (most)

display capacity, (then) size of physical memory, and (least) processor speed.

4

54

0'

8. Conclusions
On the basis of our experience with graphical programming and monitoring in this project,

the main conclusion is that, given the graphical capabilities of computers that will be

affordable, during the next decade, for programming and monitoring the interpretation of

programs, the most promising lines of development are those aimed at helping

inexperienced programmers and users of programs and, especially, people (such as users of

spreadsheets, data bases, and modeling programs) who may be thought of as implicit

programniners. Tais conclusion is expressed more fully, along with conclusions about other

issues, in the subsection on Conclusions About Dynamic Graphical Representation of the

Evaluation of Programs.

Graphical representation has several negative features, such as taking up more display and

memory space and more processing cycles than symbolic representation, but graphical

representation does make programs and data seem more concrete and definite that does

symbolic representation.

With respect to the particular approach represented by GRAPPLE, it would probably be

wrong for the writer to draw a firm conclusion because the wr!+er, having spend literally

hundereds of hours with GRAPPLE and doubtless suffering from some pride of authorship,

is not in a good position to evaluate it. What GRAPPLE needs, now, is evaluation as a

concept demonstration by a few people who know something about LISP programming but

are not so advanced as to have no need at all for concrete imagery.

946

I

I

I, I. !

7 . -.. .

9. Recommendations
The Department of Defense should continue to explore graphical programming and

monitoring, especially as aids to personnel learning to use or program computers.

The Department of Defense should not be very hopeful in the near term about uses of

dynamic graphics, of the kind we have explored, to amplify the effectiveness experienced

and skilled programmers. However, another factor of ten in computer capability might

cancel out Lhat pebihAistic suggestion.

A running GRAPPLE should be made available to program managers of the DARPA

Inforntion Processing Techniques Office, at DARPA in Arlington, Virginia, with the hope

that some of them, and perhaps visitors to IPTO, will have time to make informal

assessments of GRAPPLE. (Arrangements toward that end are being made with Dr.

Stephen Squires of IPTO.) The assessors should keep in mind, of course, that the present

GRAPPLE is a concept demonstration program and not a robust or polished product.

47

10. References
Dike, Jeffrey G., An Interface Between MIM and the X Window System, Undergraduate Thesis,

Department of Electrical Engineering and Computer Science, Massachusetts Institute of

Technology, Cambridge, Mass., 1986.

Galley, S. W., and Greg Pfister, The MDL Programming Language, Laboratory for Computer
Science (No report number), Massachusetts Institute of Technology, Cambridge, Mass.,

1979.

Naylor, Catherine, Graphical Representation of MDL Programs as Trees, Undergraduate Thesis,
Department of Electrical Engineering and Computer Science, Massachusetts Institute of

Technology, Cambridge, Mass., 1984.

Po, Lim, DIGRAM, Device Independent Graphics for MDL, Master's Thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Technology,

Cambridge, Mass., 1982.

Shrivanandon, John, The Representation of Programmer-defined Data Types in Graphical

Programming, Undergraduate Thesis, Department of Electrical Engineering and Computer
,. '.pScience, Massachusetts Institute of Technology, Cambridge, Mass., 1985.

Thompson, Michael A., Graphically Representing the Control Structure of MDL Programs,
Undergraduate Thesis, Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, Cambridge, Mass., 1983.

4--.,

1 48

11. List of Abbreviations, Acronyms, and Symbols
Here is an alphabetized list of the abbreviations, acronyms, and symbols used in the report.

Associated with each acronym, abbreviation, and symbol is an expansion or explanation.

. . .Put additional operators into the operator menu or additional data types
and classes into the menu of data types and classes.

0? A MDL operator. Is the argimnert equal to 0?

1? A MDL operator. Is the argument equal to 1?

GRAPPLE term for the MDL operator SET.

GRAPPLE term for the MDL operator SETG.

A MDL operator. Are the two arguments identical (i.e., the same object?)

=? A MDL operator. Are the two arguments equal?

?DtG Expand an abbreviation or explain an item in the menu of data types and
classes.

?Main Expand an abbreviation or explain an item in the main menu.

?R Expand an abbreviation or explain an item in the operator menu.

A GRAPPLE term for the MDL operator FORM. Abbreviation for Applier.

ASC GRAPPLE abbreviation for the MDL operator ASCII.

Ar l"IBM PC-AT. Advanced Technology. Personal Computer.

ATN GRAPPLE abbreviation for the MDL operator ATAN.

BBN Bolt Beranek and Newman, Cambridge, MA.

BNL GRAPPLE term for the MDL operator CRLF. Begin New Line.

C GRAPPLE term for the MDL operator STRING. Character striiig. Also
a computer language.

CMP GRAPPLE term for the MDL operator STRCOMP. CoMPare.

CND GRAPPLE term for the MDL operator COND. CoNDitional.

COND A MDL operator. CONDitional.

Cos A MDL operator. COSine.

49

C^ GRAPPLE term for the MDL operator PNAME. Character-string name.

Chkpt An item in the main menu. Lets the programmer record the state of
GRAPPLE at a particular point in time (colloquially, create a checkpoint)
or go back to a state checkpointed earlier.

DARPA Defencje Advanced Research Projects Agency.

DECL A MDL data type. DECLaration.

DFR An item in the menu of operators, used in order to defer the definition of
a subordinate operator the name of which is being used in a definition.
Forward reference. DeFeR.

DIGRAM A graphics system for MDL. Device Independent GRAphics for MDL.

Decl An item in the main menu. Insert declarations into the argument list of
the function or macro most recently created.

* Down An item in the main menu. Make a miniature copy of the most recently
prepared function or macro and put it down on the shelf.

* DtC Data types and Classes. A menu in GRAPPLE.

EM? GRAPPLE abbreviation for the MDL operator EMPTY?

ESC A character in the American Standard Code for Information Interchange.
ESCape.

Embed An item in the main menu. Select a location in the object that is in tbe
central programming square. Select a miniature structure from the shelf.
Select a top-level expression from the body of the function or macro
represented by the miniature structure. Embed that expression in the
object in the central programming square at the point selected.

Erase An item in the main menu. Erase the central programming area, the
main menu, and the residence sites for global variables, function and
macro parameters, and local variables.

* ErrRt An item in the main menu. Error return. Return to the top level of the
MDL interpreter. (For use after an error condition has arisen.)

Eval An item in the main menu. Evaluate the expression most recently
programmed. This evaluation uses as the values of parameters the values
provided as illustrative values or default values or local values as the
expression was being programmed. Eval ceases to be available for
evaluation of an expression at the time the programmer declares that he
has finished it by selecting FlniF or FiniX.

EXP A MDL operator. EXPonentlate.

Ss

61 1I II I I II

FONTED A Font Editor used in creating icons to represent programming
constructs.

FiniF An item in the main menu. Finish function. The programmer has
completed the body of a function or macro, so package the body and the
argument list into a function or a macro and get a name for the new
function from the programmer.

FiniX An item in the main menu. Finish expression. The programmer has
completed a top-level expression, so rearrange the display in the central
programming area in preparation for the programming of another top-
level expression.

G Abbreviation for GRAPPLE. The name of the MDL function used to
start up GRAPPLE.

G=? A MDL operator. Greater than or equal to?

G? A MDL operator. Greater than?

GBIND A MDL data type.

GRAPPLE GRAPhical Programming LanguagE.

Glb An item in the main menu. Create a global datum with a residence site
in the global data area.

Glbs An item in the main menu. If the global data have been removed from
the screen, return them to their residence sites and redisplay them.

I-C GRAPPLE term for the MDL operator ISTRING.

I-L GRAPPLE term for the MDL operator ILIST.

I-U GRAPPLE term for the MDL operator IUVECTOR.

I-V GRAPPLE term for the MDL operator IVECTOR.

IBM International Business Machines Corporation.

Int An item in the main menu. Present a menu for initialization that is like
GRAPPLE's initial menu except that it works with the mouse and
includes, in addition to the five alternatives of the initial menu, three
special reinitialization alternatives. They are: (1) to reinitialize the
mechanism for deferred definition, i.e., for forward reference to a function
or macro not yet defined; (2) to reinitialize the situation as regards global
data; and (3) to reinitialize the arrangement that keeps track of the
component diagrams have been used and prevents confusion between
what has been used and what GRAPPLE will create to represent new
programming strucutres. The third special reinitialization is drastic: in

51

0 ,
1 1 1 6 l

effect, it destroys all the graphic structures that have been defined thus
far.

L GRAPPLE abbreviation for the MDL operator LIST.

L=? A MDL operator. Less than or equal to?

L? A MDL operator. Less than?

LBIND A MDL data type.

LISP A family of programming languages. LISt Processing language.

LN GRAPPLE term for the MDL operator LOG. Logarithm Natural.
LOGarithm.

LNG GRAPPLE term for the MDL operator LENGTH.

M.I.T. Massachusetts Institute of Technology, Cambridge, MA.

MAX A MDL operator. MAXimum.

6 MDL A programming language. An outlying member of the LISP family of
programming languages. More Datatypes than Lisp.

MEM GRAPPLE abbreviation for the MDL operator MEMBER.

MIMC A MDL compiler. Machine Independent Mdl Compiler.

MIN A MDL operator. MINimum.

MOD A MDL operator. MODulo.

MP1 GRAPPLE abbreviation for the MDL operator MAPF. MAP First.

MPL GRAPPLE abbreviation for the MDL operator MAPLEAVE.

MPR GRAPPLE abbreviation for the MDL operator MAPR. MAP Rest.

MPS GRAPPLE abbreviation for the MDL operator MAPSTOP.

MP GRAPPLE term for the MDL operator MAPRET. MAP RETurn.

MSUBR A MDL datatype. Mediated SUBRoutine.

Macro An item in the main menu. Give the programmer a chance to make the
next-constructed top-level object be a macro instead of a function (or to
change his or her mind and go back to the default, which is to create a
function).

52

MuGrP An item in the main menu. To the menu of operators from graphical
programming. Put the name of the function or macro most recently
defined by graphical programming into the menu of operators (the R
menu) and create a data-base entry for it.

MuMDL An item in the main menu. To the menu of operators from MDL. Put
the name of a specified MDL object into the menu of operators and
create a data-base entry for it.

New-t An item in the main menu. Prepare to define a new data type.

O GRAPPLE term for any MDL object.

OBLIST A MDL data type.

PAR GRAPPLE abbreviation for the MDL operator PARSE.

PC Personal Computer.

PC-AT IBM Personal Computer-Advanced Technology.

PR GRAPPLE abbreviation for the MDL operator PRINC. PRINt
Character.

PRG GRAPPLE abbreviation for the MDL operator PROG. PROGram.

PRI GRAPPLE abbreviation for the MDL operator PRINI. PRINt 1 object.

PROG A MDL operator. PROGram.

PRT GRAPPLE abbreviation for the MDL operator PRINT.

R GRAPPLE abbreviation for operator. operatoR. Also, a column in the
residence area for parameters and local values. Required parameter.

RD GRAPPLE abbreviation for the MDL operator READ.

RPT GRAPPLE abbreviation for the MDL operator REPEAT.

RST GRAPPLE abbreviation for the MDL operator REST.

RTN GRAPPLE abbreviation for the MDL operator RETURN.

Ratch An item in the main menu. Ratchet. Ordinarily, the data base of
operators that GRAPPLE knows about is initialized, via initialisation 0 or
initialization 1, by being copied from a data base called the initial data
base. Selecting the item Ratchet replaces the initial data base with a copy
of the currently working data base, which contains not only the
information from the initial data base but also information about

53

IM

functions and macros the programmer has constructed. Ratchet thus
updates the inital data base to include the newly programmed objects.
The only way to get back to the "initial initial" data base after ratcheting
is to load a file. The file can be either an old save file that contains the

"initial initial" data base (which returns the whole graphical programming
system to the state recorded by the saving) or a text file that contains a
copy of the "initial initial" data base. The file
Initial-grapple-data-base.mud contains a copy.

ReDrw An item in the main menu. ReDraw the program diagram corresponding
to the current program tree. This assumes that a hiatus has been
introduced by the use of the Erase menu item.

Res-t An item in the main menu. Result type. Accept the designation of a
data type or class and then ensure that the next function or macro
constructed by graphical programming will return an object of that type
or class.

Retry An item in the main menu. Retrieve. Retrieve the contents of a Unix
file, the name of which is to be specified. In MDL terms, the contents
will be FLOADed into the MDL interpreter. If the retrieved file is one
created by the Flie menu item, then it should be a file of information
from the present programming series. Otherwise, some of the structures
it, the file may overwrite structures in the present system.

SIN A MDL operator. SINe.

sq Square.

SQT GRAPPLE abbreviation for the MDL operator SQRT.

Save An item in the main menu. Save -- i.e., checkpoint, i.e., record the
current state of the system -- in a MDL save file with the filename that
the user will specify (and with the extension save). This operation takes
about a minute.

Sgmnt An item in the main menu. Give the programmer a chance to make the
next object to be constructed by graphical programming be a MDL
segment (consisting of the contents of a structured object without the

*- container) instead of (if indeed it is going to have contents) a full-fledged
structured object. (Also give the programmer a chance to make the
system revert to the default state, which is to keep the containers of
structured objects.)

TYI A MDL operator. TYpe In a character.

U GRAPPLE abbreviation for the MDL operator and data type UVECTOR.

UNP GRAPPLE abbreviation for the MDL operator UNPARSE.

54

0R l

UVECTOR A MDL operator and data type.

Ulrix A Digital Equipment Corporation operating system for VAX computers.
A version of Unix.

Unix An operating system developed at the Bell Telephone Laboratory and
widely used on VAX (and many other) computers.

V GRAPPLE abbreviation for the MDL operator and data type VECTOR.

VAL GRAPPLE term for the MDL operator and data type GVAL.

VAX A line of computers manufactured by Digital Equipment Corporation.

X GRAPPLE term for any structured object.

X? GRAPPLE term for the MDL operator STRUCTURED?

XIT An item in the operator menu and in the menu of data types and classes.
eXIT.

XT An IBM personal computer, and eXTension of the PC.

f GRAPPLE abbreviation for the MDL operator and data type FLOAT.

i GRAPPLE term for the MDL operator and data type FIX. integer.

iTH GRAPPLE term for the MDL operator NTH.

m? GRAPPLE abbreviation for the MDL operator MONAD?

mem GRAPPLE abbreviation for the MDL operator MEMQ.

mudsub A command to Unix to load a MDL 8ave file.

or GRAPPLE term for the MDL operator OR.

pict A GRAPPLE diagram. picture.

q GRAPPLE abbreviation for the MDL operator QUOTE.

sos sum of squares.

* t GRAPPLE abbreviation for the MDL operator TYPE.

t? GRAPPLE abbreviation for the MDL operator TYPE?

tCChk An item in the main menu. Type and Class Checking. Turn on or off
the mechanism that GRAPPLE uses to make sure that the data types

55

0 1

1, 1 1 i 11 1111 I I I I ID II I III J JI!

and classes specified in the program under construction are compatible
with the operators that are specified. Even when this checking
mechanism Is turned off, the basic type-checking mechanism of MDL will
be operating - unless it, too, has been turned off. To turn it off, type
<DECL-CHECK %<>> and press the DO-IT key. To turn it on, type
<DECL-CHECK T> and press the DO-IT key.

val GRAPPLE term for the MDL operator and data type LVAL.

GRAPPLE term for the MDL operator FLOAT and data type FLOAT.

5

A

DISTRIBUTION LIST

adcres ses number
of copies

Richard P. Evans 20

PADC/COES

R A DC/DOVL I

GRIFFISS AFB NY 13441

RADC/DAP
GRIF FIS S AFP NY 1 31441

ADMINISTRATOR 12

DEF TECH INF CTR
ATTN: DTIC-DDA
CAMERCN ST. :'G 5
ALEXANDRIA VA 72304-6145

RADC/COTD
BLDG 3, ROOM 16
GRIFFISS AFB NY 13441-5700

HQ AFSC/DLAE
1

ANDREWS AFB DC 2 r,3 3 4- 5 ') 0 n

HQ AFSC/XRK
1

AND)REWS AFa vD 2r334-530

HQ AFCTEC (OAWC) 1I

Attn: Capt. Novack)

KIRTLAND AF5 NY $17117-73(11

ASO-AFALC/AXP
WkIGHT-?ATTEPS N AFB3 CH 45433

DL -1

0

ASD/AFALC/AXAE
At tn: W. H. D.ungey

Wri ight-Pat tersor AFE Oh 45433-6533

A F IT/LDE E
BUILDING 640o AREA B
WRIGHT-PATTERSO, AFB OH 45433-65P3

A FWAL/MLFO
WRIGHT-PATTERSON AFB OH 45433-6533

COMMAND CONTROL AND COMMUNICATIONS DIV
DEVELCP'.NT CENTER
MARINE CORPS DEVELOPMENT & EDUCATION COmMAND
ATTN: CODE DICA

QUANTICO VA '2134-5080

AFLMC/LGY
ATTN: CH, SYS ENGR DIV
GUNTER AFS AL 36114

COMMANDING OFFICER
NAVAL AVIONICS CENTER
LIRRARY - D/765
INDIANAPCLIS IN 46219-2189

COMMANDING OFFICEER
NAVAL TRAINING SYSTEPS CENTER
TECHNICAL INFORMATION CENTER
BUILDING 2068
ORLANDO FL 3?813-7130

COMMANDER
NAVAL OCEAN SYSTEMS CENTER
ATTN: TECHNICAL LIBFARY* CODE 96428
SAN DIEGO CA 92152-5f00O

COMMANDER (CODE 3433)
ATTN: TECHNICIL LIBFARY
NAVAL WEAPONS CENTER
CHINA LAKE, CALIFORNIA 93555-6001

DL-2

SUPERI NTEKDENT (CODE 1424)
NAVI.A POST GRADUATE SCHOOL
M ONTEREY CA 93943-5000

COM4MANDING OFFICER
NAVAL RESEARCH LABORATORY
ATTN: CODE ?627
WASHINGTON DC '0375-50)0i

A T TN: ADV SYS 0EV
HANSCOM AF3 NA 01731-5000

E S D/ IC P
HANSCOM AF9 NA 01731-5000

E S D/ X R SE?
BLDG 1704
HANSCOM AF'3 NA 01731-5000

HQ ESO SYS-2
HANSCO.*l AF9 M'A 01731-5000

The Software Engineering InstituteI
Attn: 'lajor Dan Burtonp USAF
580 South Aiken Avenue
P it tsourgh PA 15232-1502

DoD COMPUTER SECURITY CENTER1
ATTN: C 4 /TI C
9830 SAVGE ROAD
FORT GEORCE G NEADE ND 207S5-603r,

J.* C. R. Licklider 5
Massachusetts Institut, of rachnology
Laboratory fcr Computr Science
7?7 Massachuset ts Avenue
Cambridg, MAi Q?139

lDI.-3

ESD-iMITRE Softw.are Center Library
do / 4s J . A . C t o p
M7ITRE Coro D-711, MS A-35Q
Burlington Road
9edford NA 01730

Software Engineering Institute Technical Librar
C arnegi e-fILtor University
Pittsburgh PA 15232
ATTIN: Korot a Fuchs

Cot J. Green
Dirp STARS JPO
Room C-10l7
1211 South Ferr' Street
Arlington VA 22202

US G- -f rint~inqOffa IMU 511-U7/64086 DL-4

MISSION
Of

Roxm Air Development Center
RAVC pZan6 and exectes tueeatch, deveZopment, test
and zetec-ted acquisition p'Log,%zarns -in -uppotrt 06

*Command, Conttot, Communications and InteZZigence
3 , C3 1 a C' i Techni(alt and enginetng
su po4t w-ttft 4n atea4 o6 competcence is ptirvded -to
ESV pPt4o'.am 066ices (PO.6) and otChet ESV eements
tCo peJL~o~m e6ectiLve acqw&%-Ltion o6 C31 sys-tems.
The at'eaA o6 techniLcaZ competence -Lncfude
communiLcations, command and conttot, battZe

6en~t4,inte~ignceda-ta cottection and handting,
0 oZ-Ld sta-te sceences, etectomagnetic4, andptzopagattion, and etec-CkoniLc, mintainabititq,

and compatbiL~tt.

.1% %

4"

